• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um método de pontos interiores primal-dual viável para minimização com restrições lineares de grande porte / A feasible primal-dual interior-point method for large-scale linearly constrained minimization

Gardenghi, John Lenon Cardoso 16 April 2014 (has links)
Neste trabalho, propomos um método de pontos interiores para minimização com restrições lineares de grande porte. Este método explora a linearidade das restrições, partindo de um ponto viável e preservando a viabilidade dos iterandos. Apresentamos os principais resultados de convergência global, além de uma descrição rica em detalhes de uma implementação prática de todos os passos do método. Para atestar a implementação do método, exibimos uma ampla experimentação numérica, e uma análise comparativa com métodos bem difundidos na comunidade de otimização contínua. / In this work, we propose an interior-point method for large-scale linearly constrained optimization. This method explores the linearity of the constraints, starting from a feasible point and preserving the feasibility of the iterates. We present the main global convergence results, together with a rich description of the implementation details of all the steps of the method. To validate the implementation of the method, we present a wide set of numerical experiments and a comparative analysis with well known softwares of the continuous optimization community.
2

Um método de pontos interiores primal-dual viável para minimização com restrições lineares de grande porte / A feasible primal-dual interior-point method for large-scale linearly constrained minimization

John Lenon Cardoso Gardenghi 16 April 2014 (has links)
Neste trabalho, propomos um método de pontos interiores para minimização com restrições lineares de grande porte. Este método explora a linearidade das restrições, partindo de um ponto viável e preservando a viabilidade dos iterandos. Apresentamos os principais resultados de convergência global, além de uma descrição rica em detalhes de uma implementação prática de todos os passos do método. Para atestar a implementação do método, exibimos uma ampla experimentação numérica, e uma análise comparativa com métodos bem difundidos na comunidade de otimização contínua. / In this work, we propose an interior-point method for large-scale linearly constrained optimization. This method explores the linearity of the constraints, starting from a feasible point and preserving the feasibility of the iterates. We present the main global convergence results, together with a rich description of the implementation details of all the steps of the method. To validate the implementation of the method, we present a wide set of numerical experiments and a comparative analysis with well known softwares of the continuous optimization community.
3

Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes / Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platforms

Maurin, Julien 25 November 2015 (has links)
Cette étude s’inscrit dans le domaine de la simulation électromagnétique des problèmes de grande taille tels que la diffraction d’ondes planes par de larges plateformes et le rayonnement d’antennes aéroportées. Elle consiste à développer une méthode combinant décomposition en sous-domaines et compression hiérarchique des équations intégrales de frontière. Pour cela, nous rappelons dans un premier temps les points importants de la méthode des équations intégrales de frontière et de leur compression hiérarchique par l’algorithme ACA (Adaptive Cross Approximation). Ensuite, nous présentons la formulation IE-DDM (Integral Equations – Domain Decomposition Method) obtenue à partir d’une représentation intégrale des sous-domaines. Les matrices résultant de la discrétisation de cette formulation sont stockées au format H-matrice (matricehiérarchique). Un solveur spécialement adapté à la résolution de la formulation IE-DDM et à sa représentation hiérarchique a été conçu. Cette étude met en évidence l’efficacité de la décomposition en sous-domaines en tant que préconditionneur des équations intégrales. De plus, la méthode développée est rapide pour la résolution des problèmes à incidences multiples ainsi que la résolution des problèmes basses fréquences / This thesis is about the electromagnetic simulation of large scale problems as the wave scattering from aircrafts and the airborne antennas radiation. It consists in the development of a method combining domain decomposition and hierarchical compression of the surface integral equations. First, we remind the principles of the boundary element method and the hierarchical representation of the surface integral equations with the Adaptive Cross Approximation algorithm. Then, we present the IE-DDM formulation obtained from a sub-domain integral representation. The matrices resulting of the discretization of the formulation are stored in the H-matrix format. A solver especially fitted with the hierarchical representation of the IE-DDM formulation has been developed. This study highlights the efficiency of the sub-domain decomposition as a preconditioner of the integral equations. Moreover, the method is fast for the resolution of multiple incidences and the resolution of low frequencies problems
4

Pairwise Classification and Pairwise Support Vector Machines

Brunner, Carl 04 June 2012 (has links) (PDF)
Several modifications have been suggested to extend binary classifiers to multiclass classification, for instance the One Against All technique, the One Against One technique, or Directed Acyclic Graphs. A recent approach for multiclass classification is the pairwise classification, which relies on two input examples instead of one and predicts whether the two input examples belong to the same class or to different classes. A Support Vector Machine (SVM), which is able to handle pairwise classification tasks, is called pairwise SVM. A common pairwise classification task is face recognition. In this area, a set of images is given for training and another set of images is given for testing. Often, one is interested in the interclass setting. The latter means that any person which is represented by an image in the training set is not represented by any image in the test set. From the mentioned multiclass classification techniques only the pairwise classification technique provides meaningful results in the interclass setting. For a pairwise classifier the order of the two examples should not influence the classification result. A common approach to enforce this symmetry is the use of selected kernels. Relations between such kernels and certain projections are provided. It is shown, that those projections can lead to an information loss. For pairwise SVMs another approach for enforcing symmetry is the symmetrization of the training sets. In other words, if the pair (a,b) of examples is a training pair then (b,a) is a training pair, too. It is proven that both approaches do lead to the same decision function for selected parameters. Empirical tests show that the approach using selected kernels is three to four times faster. For a good interclass generalization of pairwise SVMs training sets with several million training pairs are needed. A technique is presented which further speeds up the training time of pairwise SVMs by a factor of up to 130 and thus enables the learning of training sets with several million pairs. Another element affecting time is the need to select several parameters. Even with the applied speed up techniques a grid search over the set of parameters would be very expensive. Therefore, a model selection technique is introduced that is much less computationally expensive. In machine learning, the training set and the test set are created by using some data generating process. Several pairwise data generating processes are derived from a given non pairwise data generating process. Advantages and disadvantages of the different pairwise data generating processes are evaluated. Pairwise Bayes' Classifiers are introduced and their properties are discussed. It is shown that pairwise Bayes' Classifiers for interclass generalization tasks can differ from pairwise Bayes' Classifiers for interexample generalization tasks. In face recognition the interexample task implies that each person which is represented by an image in the test set is also represented by at least one image in the training set. Moreover, the set of images of the training set and the set of images of the test set are disjoint. Pairwise SVMs are applied to four synthetic and to two real world datasets. One of the real world datasets is the Labeled Faces in the Wild (LFW) database while the other one is provided by Cognitec Systems GmbH. Empirical evidence for the presented model selection heuristic, the discussion about the loss of information and the provided speed up techniques is given by the synthetic databases and it is shown that classifiers of pairwise SVMs lead to a similar quality as pairwise Bayes' classifiers. Additionally, a pairwise classifier is identified for the LFW database which leads to an average equal error rate (EER) of 0.0947 with a standard error of the mean (SEM) of 0.0057. This result is better than the result of the current state of the art classifier, namely the combined probabilistic linear discriminant analysis classifier, which leads to an average EER of 0.0993 and a SEM of 0.0051. / Es gibt verschiedene Ansätze, um binäre Klassifikatoren zur Mehrklassenklassifikation zu nutzen, zum Beispiel die One Against All Technik, die One Against One Technik oder Directed Acyclic Graphs. Paarweise Klassifikation ist ein neuerer Ansatz zur Mehrklassenklassifikation. Dieser Ansatz basiert auf der Verwendung von zwei Input Examples anstelle von einem und bestimmt, ob diese beiden Examples zur gleichen Klasse oder zu unterschiedlichen Klassen gehören. Eine Support Vector Machine (SVM), die für paarweise Klassifikationsaufgaben genutzt wird, heißt paarweise SVM. Beispielsweise werden Probleme der Gesichtserkennung als paarweise Klassifikationsaufgabe gestellt. Dazu nutzt man eine Menge von Bildern zum Training und ein andere Menge von Bildern zum Testen. Häufig ist man dabei an der Interclass Generalization interessiert. Das bedeutet, dass jede Person, die auf wenigstens einem Bild der Trainingsmenge dargestellt ist, auf keinem Bild der Testmenge vorkommt. Von allen erwähnten Mehrklassenklassifikationstechniken liefert nur die paarweise Klassifikationstechnik sinnvolle Ergebnisse für die Interclass Generalization. Die Entscheidung eines paarweisen Klassifikators sollte nicht von der Reihenfolge der zwei Input Examples abhängen. Diese Symmetrie wird häufig durch die Verwendung spezieller Kerne gesichert. Es werden Beziehungen zwischen solchen Kernen und bestimmten Projektionen hergeleitet. Zudem wird gezeigt, dass diese Projektionen zu einem Informationsverlust führen können. Für paarweise SVMs ist die Symmetrisierung der Trainingsmengen ein weiter Ansatz zur Sicherung der Symmetrie. Das bedeutet, wenn das Paar (a,b) von Input Examples zur Trainingsmenge gehört, dann muss das Paar (b,a) ebenfalls zur Trainingsmenge gehören. Es wird bewiesen, dass für bestimmte Parameter beide Ansätze zur gleichen Entscheidungsfunktion führen. Empirische Messungen zeigen, dass der Ansatz mittels spezieller Kerne drei bis viermal schneller ist. Um eine gute Interclass Generalization zu erreichen, werden bei paarweisen SVMs Trainingsmengen mit mehreren Millionen Paaren benötigt. Es wird eine Technik eingeführt, die die Trainingszeit von paarweisen SVMs um bis zum 130-fachen beschleunigt und es somit ermöglicht, Trainingsmengen mit mehreren Millionen Paaren zu verwenden. Auch die Auswahl guter Parameter für paarweise SVMs ist im Allgemeinen sehr zeitaufwendig. Selbst mit den beschriebenen Beschleunigungen ist eine Gittersuche in der Menge der Parameter sehr teuer. Daher wird eine Model Selection Technik eingeführt, die deutlich geringeren Aufwand erfordert. Im maschinellen Lernen werden die Trainingsmenge und die Testmenge von einem Datengenerierungsprozess erzeugt. Ausgehend von einem nicht paarweisen Datengenerierungsprozess werden unterschiedliche paarweise Datengenerierungsprozesse abgeleitet und ihre Vor- und Nachteile bewertet. Es werden paarweise Bayes-Klassifikatoren eingeführt und ihre Eigenschaften diskutiert. Es wird gezeigt, dass sich diese Bayes-Klassifikatoren für Interclass Generalization Aufgaben und für Interexample Generalization Aufgaben im Allgemeinen unterscheiden. Bei der Gesichtserkennung bedeutet die Interexample Generalization, dass jede Person, die auf einem Bild der Testmenge dargestellt ist, auch auf mindestens einem Bild der Trainingsmenge vorkommt. Außerdem ist der Durchschnitt der Menge der Bilder der Trainingsmenge mit der Menge der Bilder der Testmenge leer. Paarweise SVMs werden an vier synthetischen und an zwei Real World Datenbanken getestet. Eine der verwendeten Real World Datenbanken ist die Labeled Faces in the Wild (LFW) Datenbank. Die andere wurde von Cognitec Systems GmbH bereitgestellt. Die Annahmen der Model Selection Technik, die Diskussion über den Informationsverlust, sowie die präsentierten Beschleunigungstechniken werden durch empirische Messungen mit den synthetischen Datenbanken belegt. Zudem wird mittels dieser Datenbanken gezeigt, dass Klassifikatoren von paarweisen SVMs zu ähnlich guten Ergebnissen wie paarweise Bayes-Klassifikatoren führen. Für die LFW Datenbank wird ein paarweiser Klassifikator bestimmt, der zu einer durchschnittlichen Equal Error Rate (EER) von 0.0947 und einem Standard Error of The Mean (SEM) von 0.0057 führt. Dieses Ergebnis ist besser als das des aktuellen State of the Art Klassifikators, dem Combined Probabilistic Linear Discriminant Analysis Klassifikator. Dieser führt zu einer durchschnittlichen EER von 0.0993 und einem SEM von 0.0051.
5

Pairwise Classification and Pairwise Support Vector Machines

Brunner, Carl 16 May 2012 (has links)
Several modifications have been suggested to extend binary classifiers to multiclass classification, for instance the One Against All technique, the One Against One technique, or Directed Acyclic Graphs. A recent approach for multiclass classification is the pairwise classification, which relies on two input examples instead of one and predicts whether the two input examples belong to the same class or to different classes. A Support Vector Machine (SVM), which is able to handle pairwise classification tasks, is called pairwise SVM. A common pairwise classification task is face recognition. In this area, a set of images is given for training and another set of images is given for testing. Often, one is interested in the interclass setting. The latter means that any person which is represented by an image in the training set is not represented by any image in the test set. From the mentioned multiclass classification techniques only the pairwise classification technique provides meaningful results in the interclass setting. For a pairwise classifier the order of the two examples should not influence the classification result. A common approach to enforce this symmetry is the use of selected kernels. Relations between such kernels and certain projections are provided. It is shown, that those projections can lead to an information loss. For pairwise SVMs another approach for enforcing symmetry is the symmetrization of the training sets. In other words, if the pair (a,b) of examples is a training pair then (b,a) is a training pair, too. It is proven that both approaches do lead to the same decision function for selected parameters. Empirical tests show that the approach using selected kernels is three to four times faster. For a good interclass generalization of pairwise SVMs training sets with several million training pairs are needed. A technique is presented which further speeds up the training time of pairwise SVMs by a factor of up to 130 and thus enables the learning of training sets with several million pairs. Another element affecting time is the need to select several parameters. Even with the applied speed up techniques a grid search over the set of parameters would be very expensive. Therefore, a model selection technique is introduced that is much less computationally expensive. In machine learning, the training set and the test set are created by using some data generating process. Several pairwise data generating processes are derived from a given non pairwise data generating process. Advantages and disadvantages of the different pairwise data generating processes are evaluated. Pairwise Bayes' Classifiers are introduced and their properties are discussed. It is shown that pairwise Bayes' Classifiers for interclass generalization tasks can differ from pairwise Bayes' Classifiers for interexample generalization tasks. In face recognition the interexample task implies that each person which is represented by an image in the test set is also represented by at least one image in the training set. Moreover, the set of images of the training set and the set of images of the test set are disjoint. Pairwise SVMs are applied to four synthetic and to two real world datasets. One of the real world datasets is the Labeled Faces in the Wild (LFW) database while the other one is provided by Cognitec Systems GmbH. Empirical evidence for the presented model selection heuristic, the discussion about the loss of information and the provided speed up techniques is given by the synthetic databases and it is shown that classifiers of pairwise SVMs lead to a similar quality as pairwise Bayes' classifiers. Additionally, a pairwise classifier is identified for the LFW database which leads to an average equal error rate (EER) of 0.0947 with a standard error of the mean (SEM) of 0.0057. This result is better than the result of the current state of the art classifier, namely the combined probabilistic linear discriminant analysis classifier, which leads to an average EER of 0.0993 and a SEM of 0.0051. / Es gibt verschiedene Ansätze, um binäre Klassifikatoren zur Mehrklassenklassifikation zu nutzen, zum Beispiel die One Against All Technik, die One Against One Technik oder Directed Acyclic Graphs. Paarweise Klassifikation ist ein neuerer Ansatz zur Mehrklassenklassifikation. Dieser Ansatz basiert auf der Verwendung von zwei Input Examples anstelle von einem und bestimmt, ob diese beiden Examples zur gleichen Klasse oder zu unterschiedlichen Klassen gehören. Eine Support Vector Machine (SVM), die für paarweise Klassifikationsaufgaben genutzt wird, heißt paarweise SVM. Beispielsweise werden Probleme der Gesichtserkennung als paarweise Klassifikationsaufgabe gestellt. Dazu nutzt man eine Menge von Bildern zum Training und ein andere Menge von Bildern zum Testen. Häufig ist man dabei an der Interclass Generalization interessiert. Das bedeutet, dass jede Person, die auf wenigstens einem Bild der Trainingsmenge dargestellt ist, auf keinem Bild der Testmenge vorkommt. Von allen erwähnten Mehrklassenklassifikationstechniken liefert nur die paarweise Klassifikationstechnik sinnvolle Ergebnisse für die Interclass Generalization. Die Entscheidung eines paarweisen Klassifikators sollte nicht von der Reihenfolge der zwei Input Examples abhängen. Diese Symmetrie wird häufig durch die Verwendung spezieller Kerne gesichert. Es werden Beziehungen zwischen solchen Kernen und bestimmten Projektionen hergeleitet. Zudem wird gezeigt, dass diese Projektionen zu einem Informationsverlust führen können. Für paarweise SVMs ist die Symmetrisierung der Trainingsmengen ein weiter Ansatz zur Sicherung der Symmetrie. Das bedeutet, wenn das Paar (a,b) von Input Examples zur Trainingsmenge gehört, dann muss das Paar (b,a) ebenfalls zur Trainingsmenge gehören. Es wird bewiesen, dass für bestimmte Parameter beide Ansätze zur gleichen Entscheidungsfunktion führen. Empirische Messungen zeigen, dass der Ansatz mittels spezieller Kerne drei bis viermal schneller ist. Um eine gute Interclass Generalization zu erreichen, werden bei paarweisen SVMs Trainingsmengen mit mehreren Millionen Paaren benötigt. Es wird eine Technik eingeführt, die die Trainingszeit von paarweisen SVMs um bis zum 130-fachen beschleunigt und es somit ermöglicht, Trainingsmengen mit mehreren Millionen Paaren zu verwenden. Auch die Auswahl guter Parameter für paarweise SVMs ist im Allgemeinen sehr zeitaufwendig. Selbst mit den beschriebenen Beschleunigungen ist eine Gittersuche in der Menge der Parameter sehr teuer. Daher wird eine Model Selection Technik eingeführt, die deutlich geringeren Aufwand erfordert. Im maschinellen Lernen werden die Trainingsmenge und die Testmenge von einem Datengenerierungsprozess erzeugt. Ausgehend von einem nicht paarweisen Datengenerierungsprozess werden unterschiedliche paarweise Datengenerierungsprozesse abgeleitet und ihre Vor- und Nachteile bewertet. Es werden paarweise Bayes-Klassifikatoren eingeführt und ihre Eigenschaften diskutiert. Es wird gezeigt, dass sich diese Bayes-Klassifikatoren für Interclass Generalization Aufgaben und für Interexample Generalization Aufgaben im Allgemeinen unterscheiden. Bei der Gesichtserkennung bedeutet die Interexample Generalization, dass jede Person, die auf einem Bild der Testmenge dargestellt ist, auch auf mindestens einem Bild der Trainingsmenge vorkommt. Außerdem ist der Durchschnitt der Menge der Bilder der Trainingsmenge mit der Menge der Bilder der Testmenge leer. Paarweise SVMs werden an vier synthetischen und an zwei Real World Datenbanken getestet. Eine der verwendeten Real World Datenbanken ist die Labeled Faces in the Wild (LFW) Datenbank. Die andere wurde von Cognitec Systems GmbH bereitgestellt. Die Annahmen der Model Selection Technik, die Diskussion über den Informationsverlust, sowie die präsentierten Beschleunigungstechniken werden durch empirische Messungen mit den synthetischen Datenbanken belegt. Zudem wird mittels dieser Datenbanken gezeigt, dass Klassifikatoren von paarweisen SVMs zu ähnlich guten Ergebnissen wie paarweise Bayes-Klassifikatoren führen. Für die LFW Datenbank wird ein paarweiser Klassifikator bestimmt, der zu einer durchschnittlichen Equal Error Rate (EER) von 0.0947 und einem Standard Error of The Mean (SEM) von 0.0057 führt. Dieses Ergebnis ist besser als das des aktuellen State of the Art Klassifikators, dem Combined Probabilistic Linear Discriminant Analysis Klassifikator. Dieser führt zu einer durchschnittlichen EER von 0.0993 und einem SEM von 0.0051.
6

Delay Management in Public Transportation: Capacities, Robustness, and Integration / Anschlusssicherung im Öffentlichen Verkehr: Kapazitäten, Robustheit und Integration

Schachtebeck, Michael 17 December 2009 (has links)
No description available.

Page generated in 0.0663 seconds