Spelling suggestions: "subject:"burface integral equations"" "subject:"1surface integral equations""
1 |
Multiple-grid adaptive integral method for general multi-region problemsWu, Mingfeng 12 October 2011 (has links)
Efficient electromagnetic solvers based on surface integral equations (SIEs) are developed for the analysis of scattering from large-scale and complex composite structures that consist of piecewise homogeneous magnetodielectric and perfect electrically/magnetically conducting (PEC/PMC) regions. First, a multiple-grid extension of the adaptive integral method (AIM) is presented for multi-region problems. The proposed method accelerates the iterative method-of-moments solution of the pertinent SIEs by employing multiple auxiliary Cartesian grids: If the structure of interest is composed of K homogeneous regions, it introduces K different auxiliary grids. It uses the k^{th} auxiliary grid first to determine near-zones for the basis functions and then to execute AIM projection/anterpolation, propagation, interpolation, and near-zone pre-correction stages in the k^{th} region. Thus, the AIM stages are executed a total of K times using different grids and different groups of basis functions. The proposed multiple-grid AIM scheme requires a total of O(N^{nz,near}+sum({N_k}^Clog{N_k}^C)) operations per iteration, where N^{nz,near} denotes the total number of near-zone interactions in all regions and {N_k}^C denotes the number of nodes of the k^{th} Cartesian grid. Numerical results validate the method’s accuracy and reduced complexity for large-scale canonical structures with large numbers of regions (up to 10^6 degrees of freedom and 10^3 regions). Then, a Green function modification approach and a scheme of Hankel- to Teoplitz-matrix conversions are efficiently incorporated to the multiple-grid AIM method to account for a PEC/PMC plane. Theoretical analysis and numerical examples show that, compared to a brute-force imaging scheme, the Green function modification approach reduces the simulation time and memory requirement by a factor of (almost) two or larger if the structure of interest is terminated on or resides above the plane, respectively. In addition, the SIEs are extended to cover structures composed of metamaterial regions, PEC regions, and PEC-material junctions. Moreover, recently introduced well-conditioned SIEs are adopted to achieve faster iterative solver convergence. Comprehensive numerical tests are performed to evaluate the accuracy, computational complexity, and convergence of the novel formulation which is shown to significantly reduce the number of iterations and the overall computational work. Lastly, the efficiency and capabilities of the proposed solvers are demonstrated by solving complex scattering problems, specifically those pertinent to analysis of wave propagation in natural forested environments, the design of metamaterials, and the application of metamaterials to radar cross section reduction. / text
|
2 |
Couplages FEM-BEM faibles et optimisés pour des problèmes de diffraction harmoniques en acoustique et en électromagnétisme / Optimized weak FEM-BEM couplings for harmonic scattering problems in acoustics and electromagneticsCaudron, Boris 25 June 2018 (has links)
Dans cette thèse, nous proposons de nouvelles méthodes permettant de résoudre numériquement des problèmes de diffraction harmoniques et tridimensionnels, aussi bien acoustiques qu'électromagnétiques, pour lesquels l'objet diffractant est pénétrable et inhomogène. La résolution de tels problèmes est centrale pour des calculs de surfaces équivalentes sonar et radar (SES et SER). Elle est toutefois connue pour être difficile car elle requiert de discrétiser des équations aux dérivées partielles posées dans un domaine extérieur. Étant infini, ce domaine ne peut pas être maillé en vue d'une résolution par la méthode des éléments finis volumiques. Deux approches classiques permettent de contourner cette difficulté. La première consiste à tronquer le domaine extérieur et rend alors possible une résolution par la méthode des éléments finis volumiques. Étant donné qu'elles approximent les problèmes de diffraction au niveau continu, les méthodes de troncature de domaine peuvent toutefois manquer de précision pour des calculs de SES et de SER. Les problèmes de diffraction harmoniques, pénétrables et inhomogènes peuvent également être résolus en couplant une formulation variationnelle volumique associée à l'objet diffractant et des équations intégrales surfaciques rattachées au domaine extérieur. Nous parlons de couplages FEM-BEM (Finite Element Method-Boundary Element Method). L'intérêt de cette approche réside dans le fait qu'elle est exacte au niveau continu. Les couplages FEM-BEM classiques sont dits forts car ils couplent la formulation variationnelle volumique et les équations intégrales surfaciques au sein d'une même formulation. Ils ne sont toutefois pas adaptés à la résolution de problèmes à haute fréquence. Pour pallier cette limitation, d'autres couplages FEM-BEM, dits faibles, ont été proposés. Ils correspondent concrètement à des algorithmes de décomposition de domaine itérant entre l'objet diffractant et le domaine extérieur. Dans cette thèse, nous introduisons de nouveaux couplages faibles FEM-BEM acoustiques et électromagnétiques basés sur des approximations de Padé récemment développées pour les opérateurs Dirichlet-to-Neumann et Magnetic-to-Electric. Le nombre d'itérations nécessaires à la résolution de ces couplages ne dépend que faiblement de la fréquence et du raffinement du maillage. Les couplages faibles FEM-BEM que nous proposons sont donc adaptés pour des calculs précis de SES et de SER à haute fréquence / In this doctoral dissertation, we propose new methods for solving acoustic and electromagnetic three-dimensional harmonic scattering problems for which the scatterer is penetrable and inhomogeneous. The resolution of such problems is key in the computation of sonar and radar cross sections (SCS and RCS). However, this task is known to be difficult because it requires discretizing partial differential equations set in an exterior domain. Being unbounded, this domain cannot be meshed thus hindering a volume finite element resolution. There are two standard approaches to overcome this difficulty. The first one consists in truncating the exterior domain and renders possible a volume finite element resolution. Given that they approximate the scattering problems at the continuous level, truncation methods may however not be accurate enough for SCS and RCS computations. Inhomogeneous penetrable harmonic scattering problems can also be solved by coupling a volume variational formulation associated with the scatterer and surface integral equations related to the exterior domain. This approach is known as FEM-BEM coupling (Finite Element Method-Boundary Element Method). It is of great interest because it is exact at the continuous level. Classical FEM-BEM couplings are qualified as strong because they couple the volume variational formulation and the surface integral equations within one unique formulation. They are however not suited for solving high-frequency problems. To remedy this drawback, other FEM-BEM couplings, said to be weak, have been proposed. These couplings are actually domain decomposition algorithms iterating between the scatterer and the exterior domain. In this thesis, we introduce new acoustic and electromagnetic weak FEM-BEM couplings based on recently developed Padé approximations of Dirichlet-to-Neumann and Magnetic-to-Electric operators. The number of iterations required to solve these couplings is only slightly dependent on the frequency and the mesh refinement. The weak FEM-BEM couplings that we propose are therefore suited to accurate SCS and RCS computations at high frequencies
|
3 |
Multilevel adaptive cross approximation and direct evaluation method for fast and accurate discretization of electromagnetic integral equationsTamayo Palau, José María 17 February 2011 (has links)
El Método de los Momentos (MoM) ha sido ampliamente utilizado en las últimas décadas para la discretización y la solución de las formulaciones de ecuación integral que aparecen en muchos problemas electromagnéticos de antenas y dispersión. Las más utilizadas de dichas formulaciones son la Ecuación Integral de Campo Eléctrico (EFIE), la Ecuación Integral de Campo Magnético (MFIE) y la Ecuación Integral de Campo Combinada (CFIE), que no es más que una combinación lineal de las dos anteriores.Las formulaciones MFIE y CFIE son válidas únicamente para objetos cerrados y necesitan tratar la integración de núcleos con singularidades de orden superior al de la EFIE. La falta de técnicas eficientes y precisas para el cálculo de dichas integrales singulares a llevado a imprecisiones en los resultados. Consecuentemente, su uso se ha visto restringido a propósitos puramente académicos, incluso cuando tienen una velocidad de convergencia muy superior cuando son resuelto iterativamente, debido a su excelente número de condicionamiento.En general, la principal desventaja del MoM es el alto coste de su construcción, almacenamiento y solución teniendo en cuenta que es inevitablemente un sistema denso, que crece con el tamaño eléctrico del objeto a analizar. Por tanto, un gran número de métodos han sido desarrollados para su compresión y solución. Sin embargo, muchos de ellos son absolutamente dependientes del núcleo de la ecuación integral, necesitando de una reformulación completa para cada núcleo, en caso de que sea posible.Esta tesis presenta nuevos enfoques o métodos para acelerar y incrementar la precisión de ecuaciones integrales discretizadas con el Método de los Momentos (MoM) en electromagnetismo computacional.En primer lugar, un nuevo método iterativo rápido, el Multilevel Adaptive Cross Approximation (MLACA), ha sido desarrollado para acelerar la solución del sistema lineal del MoM. En la búsqueda por un esquema de propósito general, el MLACA es un método independiente del núcleo de la ecuación integral y es puramente algebraico. Mejora simultáneamente la eficiencia y la compresión con respecto a su versión mono-nivel, el ACA, ya existente. Por tanto, representa una excelente alternativa para la solución del sistema del MoM de problemas electromagnéticos de gran escala.En segundo lugar, el Direct Evaluation Method, que ha provado ser la referencia principal en términos de eficiencia y precisión, es extendido para superar el cálculo del desafío que suponen las integrales hiper-singulares 4-D que aparecen en la formulación de Ecuación Integral de Campo Magnético (MFIE) así como en la de Ecuación Integral de Campo Combinada (CFIE). La máxima precisión asequible -precisión de máquina se obtiene en un tiempo más que razonable, sobrepasando a cualquier otra técnica existente en la bibliografía.En tercer lugar, las integrales hiper-singulares mencionadas anteriormente se convierten en casi-singulares cuando los elementos discretizados están muy próximo pero sin llegar a tocarse. Se muestra como las reglas de integración tradicionales tampoco convergen adecuadamente en este caso y se propone una posible solución, basada en reglas de integración más sofisticadas, como la Double Exponential y la Gauss-Laguerre.Finalmente, un esfuerzo en facilitar el uso de cualquier programa de simulación de antenas basado en el MoM ha llevado al desarrollo de un modelo matemático general de un puerto de excitación en el espacio discretizado. Con este nuevo modelo, ya no es necesaria la adaptación de los lados del mallado al puerto en cuestión. / The Method of Moments (MoM) has been widely used during the last decades for the discretization and the solution of integral equation formulations appearing in several electromagnetic antenna and scattering problems. The most utilized of these formulations are the Electric Field Integral Equation (EFIE), the Magnetic Field Integral Equation (MFIE) and the Combined Field Integral Equation (CFIE), which is a linear combination of the other two. The MFIE and CFIE formulations are only valid for closed objects and need to deal with the integration of singular kernels with singularities of higher order than the EFIE. The lack of efficient and accurate techniques for the computation of these singular integrals has led to inaccuracies in the results. Consequently, their use has been mainly restricted to academic purposes, even having a much better convergence rate when solved iteratively, due to their excellent conditioning number. In general, the main drawback of the MoM is the costly construction, storage and solution considering the unavoidable dense linear system, which grows with the electrical size of the object to analyze. Consequently, a wide range of fast methods have been developed for its compression and solution. Most of them, though, are absolutely dependent on the kernel of the integral equation, claiming for a complete re-formulation, if possible, for each new kernel. This thesis dissertation presents new approaches to accelerate or increase the accuracy of integral equations discretized by the Method of Moments (MoM) in computational electromagnetics. Firstly, a novel fast iterative solver, the Multilevel Adaptive Cross Approximation (MLACA), has been developed for accelerating the solution of the MoM linear system. In the quest for a general-purpose scheme, the MLACA is a method independent of the kernel of the integral equation and is purely algebraic. It improves both efficiency and compression rate with respect to the previously existing single-level version, the ACA. Therefore, it represents an excellent alternative for the solution of the MoM system of large-scale electromagnetic problems. Secondly, the direct evaluation method, which has proved to be the main reference in terms of efficiency and accuracy, is extended to overcome the computation of the challenging 4-D hyper-singular integrals arising in the Magnetic Field Integral Equation (MFIE) and Combined Field Integral Equation (CFIE) formulations. The maximum affordable accuracy --machine precision-- is obtained in a more than reasonable computation time, surpassing any other existing technique in the literature. Thirdly, the aforementioned hyper-singular integrals become near-singular when the discretized elements are very closely placed but not touching. It is shown how traditional integration rules fail to converge also in this case, and a possible solution based on more sophisticated integration rules, like the Double Exponential and the Gauss-Laguerre, is proposed. Finally, an effort to facilitate the usability of any antenna simulation software based on the MoM has led to the development of a general mathematical model of an excitation port in the discretized space. With this new model, it is no longer necessary to adapt the mesh edges to the port.
|
4 |
Localisation de la lumière dans des rugosités de taille nanométrique de surfaces métalliques traitée par les équations intégrales et les ondelettes / Light localization within nano-scale roughness of metallic surfaces treated by surface integrals and waveletsMaxime, Camille 27 January 2012 (has links)
Le cadre de cette thèse est la simulation numérique de l'interaction de la lumière avec des surfaces métalliques rugueuses pouvant être à l'origine de fortes localisation du champ électromagnétique du à des résonances plasmoniques. Les profils accidentés de ces surfaces ont des tailles caractéristiques de quelques nanomètres de largeur et de quelques dizaines de nanomètres de hauteur. La principale difficulté dans la simulation de tels phénomènes réside dans la diff'erence d'échelle entre la longueur d'onde de l'onde incidente et la taille des rugosités ainsi que les variations brutales du champ magnétique à la surface. Une méthode de simulation adaptée est la résolution numérique d'équations intégrales de surface ayant un profil périodique. Cette méthode a été implémentée en C++ et la part principale de ce travail a été le calcul de la fonction de Green pseudo-périodique. L'intensité du faisceau réfracté ainsi que les cartes de champ proche peuvent être calculées rigoureusement à partir de la solution obtenue. A l'aide de cette méthode, on a montré que des résonances plasmoniques situées dans les cavités d'un réseaux ayant des rainures de forme Gaussienne de taille nanométrique ont un comportement électrostatique similaire à celles des cavités rectangulaires, notamment une réflectivité spéculaire très faible en condition de résonance. Les performances actuelles des ordinateurs limitent cependant les études à des réseaux de petite période. Afin de dépasser ces limitations, on a fait appel à des bases de fonctions permettant de décomposer une fonction en ses parties de résolutions différentes: les ondelettes. Ce travail se conclue par une discussion sur le potentiel de deux utilisations différentes des ondelettes pour la résolution d'équation intégrales. / The framework of this thesis is the numerical simulation of the interaction of light with rough metallic surfaces which can be the origin of giant enhancements of the electromagnetic field due to plasmonic resonances. The abrupt profile of these surfaces have characteristic sizes of a few nanometers of width and a few tens of nanometers of height. The main difficulty in the simulation of such phenomena is in the scale difference of the wavelength of the incident wave and the size of the roughness as well as the abrupt variations of the magnetic field at the surface. A suited method of simulation is the numerical resolution of surface integral equations for periodic profile of the surface. This method was implemented in C++ and the main part of this work was the calculation of the pseudo-periodic Green function. The intensity of the refracted beam and that of the electromagnetic field maps are rigorously calculated from the obtained solution. We showed by applying this method that plasmonic resonances situated in the cavity of gratings with Gaussian shaped grooves of nanometric sizes have an electrostatic behaviour similar to that of the rectangular grooves, in particular, a very low specular reflectivity at the resonance. The current performances of computers limit the studies to gratings with a small period. In order to overcome these limitations, we considered a function basis enabling to decompose a functions into its components of different resolutions: the wavelets. This work ends with a discussion on the potential of two different applications of the wavelets to the resolution of integral equations.
|
5 |
Résolution des équations intégrales de surface par une méthode de décomposition de domaine et compression hiérarchique ACA : Application à la simulation électromagnétique des larges plateformes / Resolution of surface integral equations by a domain decomposition method and adaptive cross approximation : Application to the electromagnetic simulation of large platformsMaurin, Julien 25 November 2015 (has links)
Cette étude s’inscrit dans le domaine de la simulation électromagnétique des problèmes de grande taille tels que la diffraction d’ondes planes par de larges plateformes et le rayonnement d’antennes aéroportées. Elle consiste à développer une méthode combinant décomposition en sous-domaines et compression hiérarchique des équations intégrales de frontière. Pour cela, nous rappelons dans un premier temps les points importants de la méthode des équations intégrales de frontière et de leur compression hiérarchique par l’algorithme ACA (Adaptive Cross Approximation). Ensuite, nous présentons la formulation IE-DDM (Integral Equations – Domain Decomposition Method) obtenue à partir d’une représentation intégrale des sous-domaines. Les matrices résultant de la discrétisation de cette formulation sont stockées au format H-matrice (matricehiérarchique). Un solveur spécialement adapté à la résolution de la formulation IE-DDM et à sa représentation hiérarchique a été conçu. Cette étude met en évidence l’efficacité de la décomposition en sous-domaines en tant que préconditionneur des équations intégrales. De plus, la méthode développée est rapide pour la résolution des problèmes à incidences multiples ainsi que la résolution des problèmes basses fréquences / This thesis is about the electromagnetic simulation of large scale problems as the wave scattering from aircrafts and the airborne antennas radiation. It consists in the development of a method combining domain decomposition and hierarchical compression of the surface integral equations. First, we remind the principles of the boundary element method and the hierarchical representation of the surface integral equations with the Adaptive Cross Approximation algorithm. Then, we present the IE-DDM formulation obtained from a sub-domain integral representation. The matrices resulting of the discretization of the formulation are stored in the H-matrix format. A solver especially fitted with the hierarchical representation of the IE-DDM formulation has been developed. This study highlights the efficiency of the sub-domain decomposition as a preconditioner of the integral equations. Moreover, the method is fast for the resolution of multiple incidences and the resolution of low frequencies problems
|
6 |
Study of RCS from Aerodynamic Flow using Parallel Volume-Surface Integral EquationPadhy, Venkat Prasad January 2016 (has links) (PDF)
Estimation of the Radar Cross Section of large inhomogeneous scattering objects such as composite aircrafts, ships and biological bodies at high frequencies has posed large computational challenge. The detection of scattering from wake vortex leading to detection and possible identification of low observable aircrafts also demand the development of computationally efficient and rigorous numerical techniques. Amongst the various methods deployed in Computational Electromagnetics, the Method of Moments predicts the electromagnetic characteristics accurately. Method of Moments is a rigorous method, combined with an array of modeling techniques such as triangular patch, cubical cell and tetrahedral modeling. Method of Moments has become an accurate technique for solving electromagnetic problems from complex shaped homogeneous and inhomogeneous objects. One of the drawbacks of Method of Moments is the fact that it results into a dense matrix, the inversion of which is a computationally complex both in terms of physical memory and compute power. This has been the prime reason for the Method of Moments hitherto remaining as a low frequency method. With recent advances in supercomputing, it is possible to extend the range of Method of Moments for Radar Cross Section computation of aircraft like structures and radiation characteristic of antennas mounted on complex shaped bodies at realistic frequencies of practical interest. This thesis is a contribution in this direction.
The main focus of this thesis is development of parallel Method of Moments solvers, applied to solve real world electromagnetic wave scattering and radiation problems from inhomogeneous objects. While the methods developed in this thesis are applicable to a variety of problems in Computational Electromagnetics as shown by illustrative examples, in specific, it has been applied to compute the Radar Cross Section enhancement due to acoustic disturbances and flow inhomogeneities from the wake vortex of an aircraft, thus exploring the possibility of detecting stealth aircraft. Illustrative examples also include the analysis of antenna mounted on an aircraft.
In this thesis, first the RWG basis functions have been used in Method of Moments procedure, for solving scattering problems from complex conducting structures such as aircraft and antenna(s) mounted on airborne vehicles, of electrically large size of about 45 and 0.76 million unknowns.
Next, the solver using SWG basis functions with tetrahedral and pulse basis functions with cubical modeling have been developed to solve scattering from 3D inhomogeneous bodies. The developed codes are validated by computing the Radar Cross Section of spherical homogeneous and inhomogeneous layered scatterers, lossy dielectric cylinder with region wise inhomogeneity and high contrast dielectric objects.
Aerodynamic flow solver ANSYS FLUENT, based on Finite Volume Method is used to solve inviscid compressible flow problem around the aircraft. The gradients of pressure/density are converted to dielectric constant variation in the wake region by using empirical relation and interpolation techniques. Then the Radar Cross Section is computed from the flow inhomogeneities in the vicinity of a model aircraft and beyond (wake zone) using the developed parallel Volume Surface Integral Equation using Method of Moments and investigated more rigorously. Radar Cross Section enhancement is demonstrated in the presence of the flow inhomogeneities and detectability is discussed. The Bragg scattering that occurs when electromagnetic and acoustic waves interact is also discussed and the results are interpreted in this light. The possibility of using the scattering from wake vortex to detect low visible aircraft is discussed.
This thesis also explores the possibility of observing the Bragg scattering phenomenon from the acoustic disturbances, caused by the wake vortex. The latter sets the direction for use of radars for target identification and beyond target detection.
The codes are parallelized using the ScaLAPACK and BiCG iterative method on shared and distributed memory machines, and tested on variety of High Performance Computing platforms such as Blue Gene/L (22.4TF), Tyrone cluster, CSIR-4PI HP Proliant 3000 BL460c (360TF) and CRAY XC40 machines. The parallelization speedup and efficiency of all the codes has also been shown.
|
Page generated in 0.1305 seconds