Return to search

The investigation of factors governing ignition and development of fires in heathland vegetation

Heathlands typically experience regimes consisting of frequent and intense fires. These fire regimes play important roles in the lifecycles and population dynamics of all species in these communities. Prescribed fire is commonly applied to heathlands to minimise the risk of wildfires as well as to promote biodiversity. Ignitions in heathlands tend to either be unsustainable, or quickly develop into rapidly spreading intense fires. This presents a major problem for the application of prescribed fire and is the primary focus of this thesis. Heathland ignition has been investigated in three sections; litter ignition; vertical development of fire into the shrub layer; and horizontal spread through the shrub layer. These were studied in laboratory experiments using miniature versions of field fuels. Ignition success in litter layers was related to the dead fuel moisture content. Litter type, ignition source, and presence of wind were found to affect the range of ignitable fuel moisture contents of a litter bed. The effect of litter type was best explained by density. Dense litter beds required drier conditions for ignition than low density litter beds. The vertical development of fire into shrubs was mostly dependent on live fuel moisture content, but crown base height, presence of wind, ignition source, shrub height and the percentage of dead elevated fuel were also important. Horizontal spread of fires through shrub layers was most affected by the presence of a litter layer, with nearly all ignitions successful when there was an underlying litter fire. Fire spread would only occur in shrubs without a litter layer when the shrub layer was dense and dry, or had a substantial dead fuel component. Spread was more likely to be sustained when there was wind. Models predicting the moisture content of dead fuels were tested in heathlands, and as would be expected those that can be calibrated for different fuel types were found to have the best performance. Fuel moisture content and fuel load models were reviewed for heathlands, and a number of recommendations for future research were made.

Identiferoai:union.ndltd.org:ADTP/240845
Date January 2003
CreatorsPlucinski, Matthew Paul, Mathematics & Statistics, Australian Defence Force Academy, UNSW
PublisherAwarded by:University of New South Wales - Australian Defence Force Academy. School of Mathematics and Statistics
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Matthew Paul Plucinski, http://unsworks.unsw.edu.au/copyright

Page generated in 0.002 seconds