The CCAAT/Enhancer Binding Protein Beta (C/EBPβ) is part of the leucine zipper family of transcription factors and is involved in a myriad of processes including cellular proliferation and differentiation. C/EBPβ is expressed as three isoforms (LAP*, LAP, LIP), translated from a single mRNA by a leaky ribosomal scanning mechanism. While LAP* and LAP have activating functions, LIP is recognized as being a repressor of transcription due to its lack of activation domains.
Numerous studies have shown that C/EBPβ acetylation state modulates its activity in a promoter-specific manner. For instance, the acetyltransferases GCN5/PCAF and the deacetylase complex mSin3A/HDAC1 regulate C/EBPβ activity on the C/EBPa promoter. GCN5/PCAF-mediated acetylation of C/EBPβ was shown to positively affect its transcriptional activity in a steroid-dependent mechanism via the glucocorticoid receptor (GR). GR relieves HDAC1 association from C/EBPβ by targeting the deacetylase for proteasomal degradation, hence favouring GCN5-mediated acetylation of C/EBPβ and allowing maximum activation capacity to be reached. In order to further elucidate C/EBPβ activation, I sought to characterize the interplay between GCN5 and HDAC1 in regulating C/EBPβ LAP/LIP activity during murine adipogenesis by identifying their binding domain in C/EBPβ.
I identified a minimal domain located within regulatory domain 1 (RD1) of C/EBPβ that is required for both GCN5 and HDAC1 binding. Furthermore, the loss of the identified domain in C/EBPβ appears to partially mimic the GR effect, thus giving C/EBPβ a higher basal transcriptional activity that accelerates NIH 3T3 and 3T3 L1 adipogenesis. Moreover, I also showed that the LIP isoform inhibitory mode of action is partially mediated through the mSin3A/HDAC1 repressor complex, which gives LIP an active repressor function. In addition to LIP inhibitory function, I also showed that a cysteine residue located in LAP* negatively regulates its transactivating function during murine adipogenesis.
Although RD1 of C/EBPβ has been suggested to act as a negative regulatory domain, I showed that only five residues are responsible for most of its inhibitory effect. Hence, in an attempt to further define sub-domains within RD1, I characterized a new positive regulatory domain at its N-terminal region, which seems to be required for C/EBPβ activity in a promoter-specific manner.
In conclusion, this study not only supports previously hypothesized mechanisms by which C/EBPβ is regulated, but it also redefines the contribution of LAP*, LAP and LIP in regulating transcription. Most importantly, the results emphasize the countless possibilities by which C/EBPβ transactivation potential could be modulated during cellular differentiation.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/19998 |
Date | January 2011 |
Creators | Salem Abdou, Houssein |
Contributors | Haché, Robert |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds