Return to search

De Novo Design and Characterization of Surface Binding Peptides - Steps toward Functional Surfaces

<p>The ability to create surfaces with well-defined chemical properties is a major research field. One possibility to do this is to design peptides that bind with a specific secondary structure to silica nanoparticles. The peptides discussed in this thesis are constructed to be random coil in solution, but are “forced” to become helical when adsorbed to the particles. The positively charged side-chains on the peptides strongly disfavor an ordered structure in solution due to electrostatic repulsion. When the peptides are introduced to the particles these charges will strongly favor the structure because of ion pair bonding between the peptide and the negatively charged nanoparticles. The peptide-nanoparticle system has been thoroughly investigated by systematic variations of the side-chains. In order to determine which factors that contributes to the induced structure, several peptides with different amino acid sequences have been synthesized. Factors that have been investigated include 1) the positive charge density, 2) distribution of positive charges, 3) negative charge density, 4) increasing hydrophobicity, 5) peptide length, and 6) by incorporating amino acids with different helix propensities. Moreover, pH dependence and the effect of different nanoparticle curvature have also been investigated. It will also be shown that the system can be modified to incorporate a catalytic site that is only active when the helix is formed. This research will increase our understanding of peptide-surface interactions and might be of importance for both nanotechnology and medicine.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:liu-8992
Date January 2006
CreatorsNygren, Patrik
PublisherLinköping University, Linköping University, Sensor Science and Molecular Physics, Institutionen för fysik, kemi och biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, text
RelationLinköping Studies in Science and Technology. Thesis, 0280-7971 ; 1254

Page generated in 0.0019 seconds