The mechanism by which ionic lanthanum (La3+) increases and subsequently decreases spontaneous transmitter release was investigated by recording miniature endplate potentials (MEPPs) at frog neuromuscular junctions. Addition of tetrodotoxin and Co2+ delayed the onset of MEPP frequency increase but did not otherwise prevent the response. Dinitrophenol substantially reduced but did not eliminate the increase, whereas 3,4,5-trimethoxybenzoic acid8-(diethylamino) octyl ester (TMB-8) completely abolished it. Thus, La3+ does not act by depolarizing the terminal or by substituting for Ca2+ at transmitter release sites. Instead, it appears to enter the terminal through Na+ channels and promote Ca2+ release from intracellular organelles. The profound depletion of transmitter with time may be due to the high turnover of transmitter coupled with the inhibition of metabolic processes by La3+.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-14837 |
Date | 01 January 1992 |
Creators | Provan, Spencer D., Miyamoto, Michael D. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.003 seconds