Motion capture(“MoCap”) has been used for a long time in the movie and videogame industries to animate digital characters. This technology commonly requires a studio and expensive stationary equipment. However, in recent years markerless MoCap has emerged. This is a technology that uses machine learning to estimate and reproduce the movements of humans. This technology can be used with a single video camera thus making it more accessible. This study relates to research on motion capture, machine learning and computer animation. The study examines a selection of markerless MoCap tools available on the market with amateurs and small businesses as target audiences. This to explore to which extent markerless MoCap for amateurs is suitable for use. The research questions asked in this study are: How well do these tools recreate motions from an animation? How are these results affected by aggravating circumstances? How do the results of the tools differ from each other? To explore these questions, a selection of five markerless MoCap services was made. These five services were then tested to study their performances in different aggravating circumstances. An original animation was created and used in these tests. The results from these tests were analyzed using a qualitative visual analysis and a numerical analysis of extreme values. The study found the tools could not accurately reproduce the animation they were given to process. The most prominent problem being that of depth perception, which resulted in the processed animations often deviating in depth. The services also had obvious problems with recreating arms. The study also found that some of the different aggravating circumstances affected the results more than others. The results of this study shows that markerless MoCap for amateurs still has development ahead of it before the technology can be considered an effective tool. / Motion Capture (“MoCap”) har länge använts inom film- och spelindustrin för att animera digitala karaktärer. MoCap i storskalig produktion kräver dock vanligtvis en studio och dyr utrustning. Men på senare år har Markerless MoCap vuxit fram. Det är en teknik som använder sig av maskininlärning för att estimera och avbilda en persons rörelser. Denna kan användas med enbart en videokamera vilket gör tekniken lättillgänglig. Denna studie relaterar till forskning som berör Motion Capture, 3D-datoranimation, AI och maskininlärning. Studien undersöker ett urval av Markerless MoCap-verktyg som finns tillgängliga allmänheten, med amatörer och småföretag som målgrupp. Detta i syfte att undersöka i vilken utsträckning markerless MoCap för amatörer är lämplig för bruk. Problemformuleringen i denna studie är: Hur väl återskapar programmen rörelserna från en animation? Hur påverkas detta resultat av försvårande omständigheter? Hur skiljer sig dessa programs resultat från varandra? För att undersöka dessa frågor gjordes ett urval av fem Markerless MoCap-verktyg. Dessa fem verktyg testades för att studera verktygens prestationer under olika försvårande omständigheter. En egenproducerad animation användes i dessa tester. Resultaten från dessa tester analyserades med en kvalitativ visuell analys och en numerisk analys av extremvärden. Studien fann att verktygen inte med precision kunde återge den animation de fått att avbilda. Tydligast var problemet med djupseendet, vilket resulterade i att de bearbetade animationerna ofta avvek i djupled. Verktygen hade också påtagliga problem med att avbilda armar. Studien fann även att vissa försvårande omständigheter hade större effekt än andra. Den här studiens resultat visar att Markerless MoCap för amatörer fortfarande har utveckling kvar innan tekniken kan betraktas som ett effektivt verktyg.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-320283 |
Date | January 2022 |
Creators | Ottosson, Johan, Schüllerqvist, Yasmine |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:435 |
Page generated in 0.0025 seconds