Return to search

Modeling the Microstructure Evolution During and After Hot Working in Martensitic Steel

In this study, the goal is to predict the microstructure evolution during and after the hot working of a martensitic stainless steel with 13% chromium using a physically-based model in the form of a MATLAB toolbox. This model is based on dislocation density theory and consists of coupled sets of evolution equations for dislocation, vacancies, recovery, recrystallization, and grain growth. The focus in this work is on the flow stress calculation and the effect of second phase particles on the strengthening mechanisms in the material at elevated temperatures. Recovery and recrystallization are also studied for this alloy during deformation and following stress relaxation. The experimental part of this work was performed with a Gleeble thermo-mechanical simulator over the temperature range of 850 to 1200°C. Samples were investigated later by a light optical microscope (LOM) and a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscope (EDS). Hardness test and phase isolation were also performed on the samples and the results are compared with the modeling results. The model can satisfactorily predict the grain growth, recovery, recrystallization, and flow stress for this alloy. Further investigation on the second phase particles showed that the measured mean size of carbides has a good agreement with what is obtained from the model and the hardness values. On the other hand, the modeled volume fraction of the carbides followed a slightly different trend comparing to hardness values, and phase isolation results at temperatures higher than 1000°C. Additionally, the Ms temperature and fraction of the martensite phase are calculated for quenched samples where the results are following the measured hardness values. Finally, the Zener-Hollomon parameter (Z) and its relation to the flow stress and the activation energy for deformation are defined. The dynamic recrystallization (DRX) kinetic is modeled and the fraction DRX was calculated at various temperatures and strain rates for this alloy. / I denna studie är målet att förutsäga mikrostrukturutvecklingen under och efter varmbearbetning i ett martensitiskt rostfritt stål med 13 % krom med hjälp av en fysisk baserad modell i form av en MATLAB verktygslåda. Denna modell är baserad på en teori för dislokationstäthet och bestårav kopplade uppsättningar av evolutionsekvationer för dislokation, vakanser, återhämtning, rekristallisation och kornstillväxt. Fokus i detta arbete är beräkning av flytespänningen och effekten av sekundärfaspartiklar på härdningsmekanismerna i materialet vid höga temperaturer. Återhämtning och rekristallisation studeras också för denna legering under deformation och efter spänningsrelaxation. Den experimentella delen av detta arbete utfördes med en Gleeble termomekanisk simulator inom temperaturområdet 850 till 1200°C. Proverna undersöktes senare med ett ljust optiskt mikroskop (LOM) och svepelektronmikroskop(SEM) utrustad med energidispersiv spektroskopi (EDS). Hårdhetstest och fasisolering utfördes också på proverna och resultaten jämförs med modelleringsresultaten. Modellen på ett tillfredsställande sätt kan förutsäga korntillväxt, återhämtning, rekristallisation och flytspänningen för denna legering. Vidare undersökning av partiklarna i sekundärfasen visade att den uppmätta medelstorleken för karbider har bra överensstämmelse med vad som erhålls från modellen och hårdhetsvärdena. Den modellerade volymfraktionen av karbiderna följde en något annorlunda trend vid temperaturerna högre än 1000°C jämfört med hårdhetsvärden och fasisoleringsresultat. Dessutom beräknas Ms temperaturen och fraktionen av martensitfasen för släckta prover där resultaten följer de uppmätta hårdhetsvärdena. Slutligen definieras Zener-Hollomon-parametern (Z) och dess förhållande till flytspänningen och aktiveringsenergin för deformation. Den kinetiska dynamiska rekristallisation (DRX) modelleras och fraktionen DRX beräknades vidolika temperaturer och töjningshastigheter för denna legering.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:du-35570
Date January 2021
CreatorsSafara Nosar, Nima
PublisherHögskolan Dalarna, Materialteknik, KTH Royal Institute of Technology, Sweden, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.003 seconds