Poröse Kohlenstoffe stellen aufgrund ihrer hohen chemischen und physikalischen Belastbarkeit, hohen spezifischen Oberfläche und einstellbaren Porengrößen eine wichtige Materialklasse in der chemischen Industrie dar. Dabei finden Kohlenstoffe sowohl in der Katalyse, in Adsorptions- und Separationsprozessen und in der Abwasserbehandlung, wie auch in elektrochemischen Energiespeichern Anwendung. In all diesen Applikationen ist eine hohe spezifische Oberfläche des Materials, welche durch das Vorhandensein von Mikroporen erreicht wird, essentiell für eine gute Performance. Rein mikroporöse Systeme weisen allerdings aufgrund der sehr langsamen Diffusion in den kleinen Poren große Probleme im Stofftransport auf, welche zu erheblichem Druckverlust, Verlust an Kapazität und Selektivitätsänderungen führen können. In vielen Anwendungen ist daher die Kombination einer hohen spezifischen Oberfläche und eines guten Stofftransports unabdingbar, woraus das besondere Interesse an der Synthese von hierarchisch strukturierten Kohlenstoffen mit einem hohen Mikroporenanteil für eine hohe spezifische Oberfläche und großen Transportporen (Meso- und/oder Makroporen) resultiert.
Carbidabgeleitete Kohlenstoffe (carbide-derived carbons - CDC) [1, 2], welche einen vorrangig mikroporösen Charakter besitzen, werden durch selektive Ätzung von Metall- oder Halbmetallatome aus Carbiden dargestellt. Die Einführung von Transportporen erfolgt über verschiedene Templatverfahren, wobei synthetische Template meist sehr aufwendig und teuer synthetisiert werden müssen. Aufgrund des hohen synthetischen, finanziellen und materiellen Aufwandes sind daher nur Synthesen im kleinen Maßstab möglich, welche den breiten Einsatz in verschiedenen Anwendungsfeldern stark limitieren. Dem gegenüber stehen Biotemplate, welche sich durch ihre hohe Verfügbarkeit, ihre Nachhaltigkeit und ihre geringen Kosten, welche bis zu 3000-fach [3-6] geringer als synthetische Template sind, auszeichnen. Zudem besitzt Holz als Bio-Templat eine über Jahrmillionen auf Stofftransport optimierte Struktur, welche Holz zu einem vielversprechenden Templat für die Synthese hierarchischer Kohlenstoffe nicht nur aus ökologischer und ökonomischer, sondern vor allem auch aus wissenschaftlicher Sicht macht. Über die Verknüpfung des CDC-Prozesses mit Holz als Bio-Templat können so hierarchisch strukturierte Kohlenstoffmaterialien mit hohen Oberflächen und einem guten Transportsystem synthetisiert werden, welche die Möglichkeit zum Einsatz in einem breiten Anwendungsbereich bieten.
Durch einen einfachen Zwei-Stufen-Prozess bestehend aus Imprägnierung eines flüssigen SiC-Präkursors und anschließender Hochtemperturchlorierung (Abbildung 1) war es möglich, hierarchisch strukturierte Kohlenstoffe unter Erhalt der typischen Holzmikrostruktur mit großen Transportporen und zusätzlichem mikoporösem Charakter, durch den eingebrachten CDC-Kohlenstoff, zu synthetisieren. Die Porengrößen und -verteilung sind dabei stark von der Holzart, der Chlorierungstemperatur und den Parametern des Imprägnierprozesses abhängig. Es konnte ein linearer Zusammenhang zwischen eingebrachter Siliziumcarbidmenge und der spezifischen Oberfläche des resultierenden Kohlenstoffmaterials ermittelt werden, welcher ein gezieltes Design der Holz-CDC-Materialien in Bezug auf Oberfläche und Porenvolumen/-größe ermöglicht. Neben der makroporösen Zellstruktur des Holzes konnte zudem die makroskopische Form während des gesamten Prozesses vollständig erhalten werden, welches die gezielte Synthese von Formkörpern, wie Monolithen, ermöglicht. Die Synthese von Holz-CDC-Materialien bietet daher einen großen ökonomischen Vorteil gegenüber herkömmlichen Kohlenstoffsynthesen, in denen meist pulverförmige Produkte entstehen, welche dann zur Nutzung in verschiedenen Anwendungen durch Presswerkzeuge oder den Zusatz von Bindermaterialien in Formkörper gebracht werden müssen.
Zur weiteren Steigerung der Oberfläche und des Porenvolumens wurden Voraktivierungen am Holztemplat durchgeführt. Hierbei wurden sowohl physikalische Aktivierungsmethoden mit Wasserdampf oder Kohlenstoffdioxid, wie auch chemische Aktivierungsmethoden mit Säuren und Basen untersucht. Über den Aktivierungsprozess wurde eine zusätzliche Porosität in die Holzmatrix eingebracht, wodurch nach anschließendem Imprägnierprozess und Hoch-temperaturhalogenierung Holz-CDC-Materialien mit trimodalem Porensystem bestehend aus Mikro-, Meso- und Makroporen mit Oberflächen von bis zu 1800 m^2/g und Porenvolumina bis zu 1,0 cm^3/g erzielt werden konnten.
Aufgrund ihrer guten Leitfähigkeit, hohen Oberfläche und porösen Eigenschaften stellen Kohlenstoffe interessante Kathodenmaterialien für die Lithiumschwefelbatterie dar. Trotz intensiver Forschungen in den letzten 10 Jahren konnten die Herausforderungen einer hohen Zyklenstabilität, Ratenstabilität und Zellkapazität, sowie geringer Elektrolytmengen bis heute nicht zufriedenstellend gelöst werden. Hierarchisch strukturierte Kohlenstoffmaterialien, welche „Reaktions- und Transportporen“ besitzen, stellten sich als vorteilhaftes Kathodenmaterial heraus. Die longitudinal ausgerichteten Makroporen (Transportporen) der Holz-CDCs ermöglichen einen schnellen Ionentransport, welcher auch bei hohen Lade- und Entladeraten stabile Kapazitäten ermöglicht. Dem gegenüber setzen die Mikroporen (Reakionsporen) die Löslichkeit der Polysulfide herab, welches eine gute Ratenstabilität über 100 Zyklen zur Folge hat. Es konnten mit den synthetisierten Holz-CDC-Materialien stabile Kapazitäten über 580 mAh/gSchwefel mit hohen Stromdichten von 20 mA/cm^2 (2C) und sehr geringen Elektrolytmengen von nur 6,8 µl/mgSchwefel erzielt werden. Diese Daten zeigen eine deutliche Verbesserung zu den in der Literatur bisher veröffentlichten Werten [3,7].
Neben dem Einbringen einer zusätzlichen Porosität werden durch den chemischen Aktivierungsprozess Oberflächenfunktionalitäten an der Kohle gebildet. Diese Oberflächen-funktionalitäten können vor allem in der Adsorption von polaren Verbindungen essentiell für eine hohe Adsorptionskapazität sein. Quecksilber stellt ein giftiges Element dar, welches anthropogen durch die Kohleindustrie jährlich mit ca. 4000 t freigesetzt wird. Die Entfernung von Quecksilber aus Industrieabgasen erfolgt über dessen Lösung in Wasser und anschließende adsorptive Prozesse, wobei Kohle als Adsorbens Einsatz findet. Untersuchungen der Holz-CDC-Materialien zeigten hohe Quecksilber-Adsorptionskapazitäten von 242 mgHg/gKohle. Gegenüber herkömmlichen kommerziellen Aktivkohlen [8] mit 12 mg/g und neuartigen Aktivkohlen auf Bio-Basis [8] mit 150 mg/g, zeigen die untersuchten Holz-CDC-Materialien 1,5- bis 200-fach höhere Aufnahmekapazitäten. Bei diesen ersten proof-of-principle-Untersuchungen konnte das hohe Potential holzbasierter CDC-Materialien für die Anwendung in Adsorptionsprozessen gezeigt werden, welches eine deutliche Steigerung der Kapazität durch weitere zukünftige Optimierungen des Materials verspricht.
Holz kann ebenfalls Anwendung zur Synthese hochporöser Kohlenstoffstäbchen finden. Hierbei wird die Holzstruktur vollständig mit Siliziumcarbid gefüllt. Nach der anschließenden Entfernung des Holztemplates über Calcination bleibt die Negativstruktur des Holzgerüstes als stäbchenförmige Strukturen erhalten. Durch nachfolgende Reinigung und Hochtemperatur-chlorierung können die SiC-Stäbchen in rein mikroporöse CDC-Stäbchen umgewandelt werden, welche sehr hohe spezifische Oberflächen von bis zu 3680 m^2/g und Porenvolumina von bis zu 1,6 cm^3/g besitzen. Aufgrund ihres unpolaren Charakters und der hohen spezifischen Oberfläche sind diese Strukturen besonders für die Adsorption von aromatischen, gering bzw. nicht polaren Verbindungen geeignet. Das adsorptive Verhalten der Stäbchenstrukturen wurde bei der Adsorption von Methylenblau, einer in der Literatur häufig verwendeten Beispielsubstanz für die Adsorption voluminöser aromatischer Verbindungen, und von Diclofenac untersucht. Diclofenac ist ein Schmerzmittel, welches vor allem bei Rheuma eingesetzt wird und mit ca. 63 t/Jahr in Deutschlands Wassersysteme eingetragen wird. Die schlechte Abbaubarkeit und die unzureichende Entfernung von Diclofenac über herkömmliche Abwasseraufbereitungsanlagen haben in den letzten Jahren zu einer deutlichen Anreicherung des Medikamentes in der Umwelt geführt. Die Entfernung von Diclofenac hat, neben der Entfernung anderer aromatischer Medikamente, wie Ibuprofen und Carbamazepin, in den letzten 10 Jahren daher deutlich an Bedeutung gewonnen. CDC-Stäbchen zeigen im Vergleich zu herkömmlichen Kohlenstoffen, wie Printex oder Hydraffin P800, fast doppelt so hohe Aufnahmekapazitäten für Methylenblau unter ähnlich schnell ablaufender Adsorptionkinetik. Auch Diclofenac kann an den CDC-Stäbchen mit 580 mg/g deutlich besser adsorbieren als an Hydraffin P800, welche eine Kapazität von 490 mg/g zeigt. Bedenkt man, dass es sich bei Hydraffin P800 (Firma: Donau Carbon) um eine für die Adsorption von organischen Wasserschadstoffen optimierte Aktivkohle handelt, wird das hohe Potential der unoptimierten CDC-Stäbchen deutlich.
[1] V. Presser, M. Heon, Y. Gogotsi, Adv. Funct. Mat., 2011, 21, 810.
[2] L. Borchardt, M. Oschatz, S. Kaskel, Materials horizon , 2014, 1, 157.
[3] C. Hoffmann, S. Thieme, J. Brückner, M. Oschatz, T. Biemelt, G. Mondin, H. Althues, S. Kaskel, ACS Nano, 2014, 8, 12, 12130.
[4] M. Oschatz, L. Borchardt, M. Thommes, K.A. Cychosz, I. Senkovska, N. Klein, R. Frind, M. Leistner, V. Presser, Y. Gogotsi, S. Kaskel, Angew. Chem. Int. Ed., 2012, 51 (13), 7577.
[5] M. Adam, P. Strubel, L. Borchardt, H. Althues, S. Dörfler, S. Kaskel, Journal of Materials Chemistry A, 2015, accepted, DOI: 10.1039/C5TA06782K
[6] M. Adam, M. Oschatz, W. Nickel, S. Kaskel, Micro. Meso. Mater., 2015, 210, 26.
[7] Z. Wei Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu , Y. Cui , Nat. Commun., 2013, 4 , 1331.
[8] M. Zahibi., A. Ahmadpour, A. Haghighi Asl, J. Hazard. Mater., 2009, 167, 230.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-204425 |
Date | 22 June 2016 |
Creators | Adam, Marion |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Stefan Kaskel, Prof. Dr. Alexander Eychmüller |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0037 seconds