Return to search

Synthesis and in vitro applications of fluorescent imaging agents

Fluorescent imaging technologies that offer new ways to visualise and quantify fluorescently labelled molecules are increasing, necessitating the development of fluorescent molecules that can efficiently and specifically label targets in vitro and in vivo. The first aim of this thesis was the study of human neutrophil elastase. Human neutrophil elastase is an important enzyme in the regulation of inflammation but if over expressed can become part of the cause of inflammation itself. To elucidate this dual function and have a greater understanding of this enzyme, an imaging probe for neutrophil elastase was designed. Firstly, the syntheses of fluorescently labelled three branched dendron core structures were optimised, and studied in neutrophils. The selected core structure was functionalised with an elastase specific peptide sequence and fluorescently labelled. The probe was specifically cleaved by neutrophil elastase in an enzymatic assay and in the presence of activated neutrophils (Chapter 1). Fluorescein and rhodamine are dyes that are readily available, are affordable and have convenient wavelengths for microscopy and flow cytometry. Carboxyfluorescein diacetate N-succinimidyl ester (CFDA-SE) is a commonly used fluorescein derivative, widely used in cell proliferation assay. It is mainly used as a mixture of isomers and its synthesis is not reported. Herein a short and simple synthesis of the two individual isomers of carboxyfluorescein diacetate N-succinimidyl ester as well as the equivalent rhodamine variation (carboxytetraethylrhodamine N-succinimidyl ester) is reported (Chapter 2). The labelling properties of these probes were studied in proliferation assays on mouse and human T lymphocytes. Finally, the nuclear penetration of the dendron structure combined with nuclear localisation sequences (NLS) was investigated. Attachment of nuclear localisation sequences to the probe in the presence of fluorescein demonstrated successful entry into the nucleus in human alveolar adenocarcinoma cell line (A549) (Chapter 3).

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:630399
Date January 2014
CreatorsBrunet, Aurelie Claude Laure
ContributorsBradley, Mark; Campbell, Colin
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/9659

Page generated in 0.0023 seconds