Return to search

Elaboration de matériaux céramiques poreux à base de SiC pour la filtration et la dépollution / Elaboration of SiC base porous ceramic materials for filtration gas clean-up

En 1920, le moteur Diesel marque l'histoire en se faisant une place dans le milieu de l'automobile. Toutefois, malgré la révolution que représente le moteur Diesel notamment en terme de technologie (moteur à combustion interne dont l'allumage n'est pas commandé mais spontané par phénomène d'auto-inflammation (absence de bougie d'allumage)), des inconvénients majeurs subsistent, tout particulièrement au niveau environnemental et sanitaire (émission de gaz à effet de serre, prélèvement accru d'énergie fossile, impact direct sur la santé). Afin de lutter contre ces émissions, l'Union Européen à mit en place les normes EURO (depuis 1993) incitant les constructeurs automobiles à concevoir des procédés d'élimination des particules carbonées et à apporter des évolutions au niveau des motorisations. C'est dans ce contexte qu'a vu le jour la technologie Filtre à Particules initié par Peugeot en 1999 pour évoluer d'années en années jusqu'à être considérées aujourd'hui comme une avancée majeur en terme de traitement des particules Diesel. Encore aujourd'hui les problèmes d'émanations demeurent en raison des imbrûlés générés par le moteur diesel (suies, HC aromatiques polycycliques, d'oxyde de soufre, d'oxyde d'azote…). Les dégagements de particules de suies fines demeurant un problème particulièrement important au niveau de la santé. Cette thèse s'inscrit dans l'optique d'optimisation du procédé FàP en proposant l'élaboration de membrane à base de SiC supportée. Plus généralement, notre étude concerne l'élaboration de céramiques poreuses (membranes supportées et mousses) à base de silicium pour application environnementale et sanitaire (Filtration des particules fines, dépollution et séquestration de CO2).Le Chapitre I traite du contexte général de l'étude. La problématique des émissions de particules est abordée d'un point de vue sanitaire et environnemental en précisant les normes en vigueurs pour leur contrôle. La technologie FàP est décrite avant d'introduire le SiC et la voie dite des « polymères précéramiques » (PDCs). L'aspect catalytique est ensuite abordé avant de développer le principe d'élaboration de membrane SiC et leur intérêt pour une application de dépollution automobile.Le Chapitre II traite de l'élaboration de membranes SiC supportées. L'étude concerne l'élaboration d'un procédé optimale pour déposer une membrane au sein de la porosité du FàP qui modifierait les caractéristiques de porosité de ce dernier sans pour autant engendrer des répercussions néfastes sur la filtration. Le polymère précéramique, précurseur de SiC, sera alors décrit et nous étudierons sa mise en forme par la technique dite de « trempage-tirage » (dip-coating) afin d'élaborer, après pyrolyse, une membrane SiC. Cette dernière sera caractérisée par de nombreux outils expérimentaux.Le Chapitre III reprend le procédé d'élaboration des membranes de SiC élaboré dans le Chapitre II mais il proposera d'aller plus loin avec la réalisation et l'étude de catalyseurs pour la combustion des suies, et leur intégration au sein d'une microémulsion de type SiC-MxOy utilisée pour revêtir les FàP.Le Chapitre IV propose une étude sur la préparation de mousses à base de SiC. Ce chapitre d'aspect plus fondamental consistera à développer des mousses cellulaires et à porosité hiérarchisée à base des éléments silicium (Si), bore (B), carbone (C) et azote (N). Cette phase de carbonitrure de silicium et de bore (Si/B/C/N) sera élaborée par couplage de la voie PDCs avec soit des agents sacrificiels soit par réplication. Une étude préliminaire sur la séquestration de CO2 sera alors décrite pour finir. / Since the 90's, Diesel engines are widely used though they are criticized because of the pollution emitted. The constant updates of the Europeans norms (since 1993) concerning the diesel emissions imply a perpetual improvement of filtration techniques. The Diesel Particles Filter (DPF) technology used by the car manufacturer PSA Peugeot Citroën is one of the best ways to fulfill the limitation for diesel emissions. However, particles emission issue is still a problem and future legislations more and stricter, so an improvement of the DPF process is required to respect them. In this context, we have considered the elaboration of two different types of porous membranes on the DPF channels. The first one was in SiC, and had the aim to enhance the filtration efficiency. In this way, the smallest particles matter could be locked in the filter. The second kind of membrane integrates a catalytic phase inside the ceramic matrix, so in addition to the filtration aspect, it could improve soot combustion during the regeneration step of the DPF.The first chapter of my thesis deals with the literature corresponding to the subject, i.e. the DPF technology, non-oxides Si-based ceramics, and in particular those obtained through polymer-derived ceramics route (also called PDCs route). Then, ceramic coatings and catalytic phases are also treated. In the second chapter, we have considered the PDCs route and preceramic polymers to elaborate a SiC coating inside the DPF channels. We employed the dip-coating technique to overlay the channel surface with the AHPCS precursor of SiC (allylhydridopolycarbosilane), then, a pyrolysis under argon allows obtaining a SiC coating, in order to decrease the average pore diameter of the DPF (keeping an efficient filtration while avoiding overpressure) to catch soot nanoparticles evolving from Diesel engine.The third part of my PhD deals with the elaboration of another kind of coating for the DPF channels including a catalytic phase in the ceramic membrane. For this purpose, the microemulsion synthesis has been considered to prepare SiC-MxOy membrane. Further, we incorporated various catalytic phases based on Ce, Fe and Pt as activators of soot combustion. By employing the dip-coating technique, we successfully covered the DPF channels of our monoliths with the aforementioned microemulsion and after a heat treatment under controlled atmosphere; a porous coating consisting of the catalytic phase and the ceramic matrix was obtained. From this film, the porosity has been modified by lowering the diameter of the initial pores, but also by getting an additional porosity due to the polymer conversion and the surfactant decomposition. Catalytic sites in the ceramic have improved the soot combustion by lowering the temperature of the combustion.The fourth chapter introduces the elaboration of porous SiBCN materials through two approaches, replication and warm-pressing with sacrificial template (polymethylmethacrylate, PMMA). The SiBCN ceramic is a promising material due to its high mechanical properties and its stability at high temperature (1700-1800°C). By coupling the PDCs way with those two techniques, we are able to elaborate SiBCN porous materials which features can be tuned according to the technological application envisaged.

Identiferoai:union.ndltd.org:theses.fr/2014MON20015
Date15 January 2014
CreatorsSandra, Fabien
ContributorsMontpellier 2, Miele, Philippe, Bernard, Samuel, Demirci, Umit Bilge
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds