<p>LiMn<sub>2</sub>O<sub>4</sub> is ideal as a high-capacity Li-ion battery cathode material by virtue of its low toxicity, low cost, and the high natural abundance of Mn. Surface related reactions and bulk kinetics have been the major focus of this work. The main techniques exploited have been: electrochemical cycling, X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy and thermal analysis.</p><p>Interface formation between the LiMn<sub>2</sub>O<sub>4 </sub>cathode and carbonate-based electrolytes has been followed under different pre-treatment conditions. The variables have been: number of charge/discharge cycles, storage time, potential, electrolyte salt and temperature. The formation of the surface layer was found not to be governed by electrochemical cycling. The species precipitating on the surface of the cathodes at ambient temperature have been determined to comprise a mixture of organic and inorganic compounds: LiF, Li<sub>x</sub>PF<sub>y</sub> (or Li<sub>x</sub>BF<sub>y</sub>, depending on the electrolyte salt used), Li<sub>x</sub>PO<sub>y</sub>F<sub>z</sub> (or Li<sub>x</sub>BO<sub>y</sub>F<sub>z</sub>) and poly(oxyethylene). Additional compounds were found at elevated temperatures: phosphorous oxides (or boron oxides) and polycarbonates. A model has been presented for the formation of these surface species at elevated temperatures. </p><p>The cathode surface structure was found to change towards a lithium-rich and Mn<sup>3+</sup>-rich compound under self-discharge. The reduction of LiMn<sub>2</sub>O<sub>4</sub>, in addition to the high operating potential, induces oxidation of the electrolyte at the cathode surface.</p><p>A novel <i>in situ</i> electrochemical/structural set-up has facilitated a study of the kinetics in the LiMn<sub>2</sub>O<sub>4</sub> electrode. The results eliminate solid-phase diffusion as the rate-limiting factor in electrochemical cycling. The electrode preparation method used results in good utilisation of the electrode, even at high discharge rates.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-1397 |
Date | January 2001 |
Creators | Eriksson, Tom |
Publisher | Uppsala University, Department of Materials Chemistry, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1104-232X ; 651 |
Page generated in 0.002 seconds