Nanometer-sized semiconductor crystals, termed ‘quantum dots’, are of fundamental interest because of their size-tunable properties. Three-dimensional quantum confinement of charge carriers by the small crystal size results in discrete atomic-like electronic states. This dissertation describes the synthesis and in-depth characterization of lead chalcogenide colloidal quantum dots for forthcoming applications as near-infrared single photon emitters. An efficient single photon source that operates at telecommunication wavelengths (between 1.3 and 1.6 µm) is a basic requirement for many photonic quantum technologies, such as quantum computing and quantum cryptography.
Chapters 1 and 2 of this work provide an introduction to colloidal quantum dots and their use as single photon emitters. It includes a description of photonic crystal microcavities and their ability to enhance the spontaneous emission rate of quantum dots. The synthesis and basic characterization of PbSe and PbS quantum dots is then discussed in chapter 3. In particular, a new synthetic method for the preparation of highly photoluminescent PbS quantum dots is presented. PbSe/CdSe core/shell quantum dots prepared by a cation exchange reaction are also described and a significant improvement in photo-stability is shown. Chapter 3 concludes with a description of three different surface modification techniques. PbSe core and PbSe/CdSe core/shell materials are investigated further in chapter 4 by advanced characterization techniques that include high-angle annular dark field (HAADF) imaging, energy-filtered transmission electron microscopy (EF-TEM) imaging, energy-dependent X-ray photo-electron spectroscopy (XPS), small angle X-ray scattering (SAXS), and small angle neutron scattering (SANS). The information obtained from these techniques is combined to form a structural model of the PbSe core and PbSe/CdSe core/shell quantum dots with greater complexity than previously reported. In chapter 5, the temperature-dependent photoluminescence from PbSe and PbSe/CdSe core/shell quantum dots is discussed and a thermal model is presented that accounts for the large (non-trivial) temperature dependence of the Stokes shift and photoluminescence lineshape over the entire temperature range (4.5 to 295 K). Chapter 6 examines two scalable methods to integrate the colloidal quantum dots into silicon two-dimensional photonic crystal slab microcavities (a requirement for efficient single photon emission). Finally, conclusions and possible future work are discussed in chapter 7. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/3481 |
Date | 19 August 2011 |
Creators | Abel, Keith Alexander |
Contributors | van Veggel, Frank C.J.M. |
Source Sets | University of Victoria |
Language | English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0014 seconds