Return to search

Poly(lactide)-containing Multifunctional Nanoparticles: Synthesis, Domain-selective Degradation and Therapeutic Applicability

Construction of nanoassemblies from degradable components is desired for packaging and controlled release of active therapeutics, and eventual biodegradability in vivo. In this study, shell crosslinked micelles composed of biodegradable poly(lactide) (PLA) core were prepared by the self-assembly of an amphiphilic diblock copolymer synthesized by a combination of ring opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. Enzymatic degradation of the PLA cores of the nanoparticles was achieved upon the addition of proteinase K (PK). Kinetic analyses and comparison of the properties of the nanomaterials as a function of degradation extent will be discussed.

Building upon our findings from selective-excavation of the PLA core, enzyme- and redox-responsive nanoparticles were constructed for the encapsulation and stimuli-responsive release of an antitumor drug. This potent chemotherapeutic, otherwise poorly soluble in water was dispersed into aqueous solution by the supramolecular co-assembly with an amphiphilic block copolymer, and the release from within the core of these nanoparticles were gated by crosslinking the hydrophilic shell region with a reduction-responsive crosslinker. Enzyme- and reduction-triggered release behavior of the antitumor drug was demonstrated along with their remarkably high in vitro efficacy.

As cationic nanoparticles are a promising class of transfection agents for nucleic acid delivery, in the next part of the study, synthetic methodologies were developed for the conversion of the negatively-charged shell of the enzymatically-degradable shell crosslinked micelles to positively-charged cationic nanoparticles for the complexation of nucleic acids. These degradable cationic nanoparticles were found to efficiently deliver and transfect plasmid DNA in vitro. The hydrolysis of the PLA core and crosslinkers of the nanocarriers may provide a mechanism for their programmed disassembly within endosomes, which would in-turn promote endosomal disruption by osmotic swelling, and release of active therapeutics from the polymeric assemblies.

In the last part, a comparative degradation study was performed between the anionic and cationic micellar assemblies in the presence of two model enzymes, and electrostatic interaction-mediated preferential hydrolysis was demonstrated between the oppositely-charged enzyme-micelle pairs. These findings may be of potential significance toward the design of charge-mediated enzyme-responsive nanomaterials that are capable of undergoing environmentally-triggered therapeutic release, disassembly or morphological alterations under selective enzyme conditions.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/149300
Date02 October 2013
CreatorsSamarajeewa, Sandani
ContributorsWooley, Karen L., Barondeau, David P., Darensbourg, Donald J., Cosgriff-Hernandez, Elizabeth
Source SetsTexas A and M University
LanguageEnglish
Detected LanguageEnglish
TypeThesis, text
Formatapplication/pdf

Page generated in 0.0021 seconds