The prevalence of type II diabetes is increasing at an alarming rate due to the western world lifestyle. Type II diabetes is characterized by an insulin resistance distinguished by impaired glucose uptake in adipose and muscle tissues. The molecular mechanisms behind the insulin recistance and also the knowledge considering normal insulin signalling in fat cells, especially in humans, are still unclear. Insulin receptor substrate (IRS) is known to be important for medating the insulin-induced signal from the insulin receptor into the cell. We developed and optimized a method for transfection of primary human adipocytes by electroporation. By recombinant expression of proteins, we found a proper IRS to be crucial for both mitogenic and metabolic signalling in human adipocytes. In human, but not rat, primary adipocytes we found IRS1 to be located at the plasma membrane in non-insulin stimulated cells. Insulin stimulation resulted in a two-fold increase of the amount of IRS1 at the plasma membrane in human cells, compared with a 12-fold increase in rat cells. By recombinant expression of IRS1 we found the species difference between human and rat IRS1 to depend on the IRS proteins and not on properties of the host cell. The adipocytes function as an energy store, critical for maintaining the energy balance, and obesity strongly correlates with insulin resistance. The insulin sensitivity of the adipocytes with regard to the size of the cells was examined by separating small and large cells from the same subject. We found no increase of the GLUT4 translocation to the plasma membrane following insulin stimulation in the large cells, whereas there was a two-fold increase in the small cells. This finding supports the idea of a causal relationship between the enlarged fat cells and reduced insulin sensitivity found in obese subjects. The insulin receptor is located and functional in a specific membrane structure, the caveola. The morphology of the caveola and the localization of the caveolar marker proteins caveolin-1 and -2 were examined. Caveolae were shown to be connected to the exterior by a narrow neck. Caveolin was found to be located at the neck region of caveolae, which imply importance of caveolin for maintaining and sequestering caveolae to the plasma membrane. In conclusion, the transfection technique proved to be highly useful for molecular biological studies of insulin signal transduction and morphology in primary adipocytes.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-8960 |
Date | January 2007 |
Creators | Stenkula, Karin |
Publisher | Linköpings universitet, Cellbiologi, Linköpings universitet, Hälsouniversitetet, Institutionen för biomedicin och kirurgi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Linköping University Medical Dissertations, 0345-0082 ; 977 |
Page generated in 0.0031 seconds