Return to search

Muscle Stem Cell Fate is Directed by the Mitochondrial Fusion Protein OPA1

During aging there is a decline in (MuSCs) and muscle regeneration, though the underlying reason is unknown. Interestingly, mitochondrial fragmentation is a common feature in aging, however, how this impacts MuSC function and maintenance has not been investigated. To address the effect of mitochondrial fragmentation in MuSCs, we generated a knockout mouse model using the Pax7CreERT2 inducible system to target deletion of the mitochondrial fusion protein Opa1 specifically within MuSCs (Opa1-KO). Analysis of MuSC function following muscle injury revealed a defect in the regenerative potential of Opa1-KO MuSCs. Moreover, following injury there was a substantial decrease in the number of MuSC in Opa1-KO animals with a concomitant increase in the number of committing cells, illustrating that loss of Opa1 drives MuSC towards commitment at the expense of self-renewal. Furthermore, loss of Opa1 in MuSCs alters the quiescence state, priming MuSCs for activation, as indicated by a reduction in quiescence-related genes, increased EdU incorporation, and enhanced cell cycle kinetics. To address the impact of mitochondrial dysfunction on muscle stem cell capacity, we generated a model of chronic Opa1 loss. Analysis of muscle stem cell function 3 months after Opa1 ablation revealed mitochondrial dysfunction and a defect in proliferation upon activation, leading to failed muscle regeneration. These data are the first to demonstrate a novel role for mitochondrial structure in the regulation of MuSC maintenance and regenerative capacity.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/41974
Date06 April 2021
CreatorsBaker, Nicole
ContributorsKhacho, Mireille
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.002 seconds