Le dopage du silicium par implantation ionique pour le photovoltaïque est une application relativement récente dont l'essor se heurte encore aujourd'hui aux coûts élevés d'intégration au sein des lignes de fabrication des cellules solaires. L'implantation ionique par immersion plasma promet de répondre aux futures exigences du secteur en termes de coûts et de productivité.Ces travaux de thèse ont permis le développement de procédés d'implantation ionique par immersion plasma de l'équipement PULSION®, conçu par IBS, dédiés à la fabrication de cellules solaires en silicium monocristallin. Dans un premier temps, nous montrons qu'il permet la réalisation de profils de dopage d'émetteur de type n variés, répondant aux exigences des cellules solaires à haut rendement. Les émetteurs fabriqués sont caractérisés de manière chimique, physique et électrique afin de démontrer leur excellente qualité. L'intégration de l'implantation ionique des émetteurs au sein d'un processus de fabrication industriel et peu coûteux, développé par l'INES sur silicium monocristallin de type p, permet d'atteindre des rendements de conversion supérieurs à 19,3%, soit un gain de plus de 0,5% par rapport aux rendements obtenus avec des cellules usuelles à émetteurs dopés par diffusion POCl3.La réalisation d'émetteurs de type p est également étudiée dans ce mémoire afin de préparer la transition technologique vers les cellules solaires sur silicium monocristallin de type n. Confirmant les atouts et le potentiel de la technologie d'implantation ionique par immersion plasma, les travaux menés au cours de cette thèse débouchent sur la conception d'un prototype industriel PULSION® dédié au photovoltaïque. / Ion implantation is a major process technology for manufacturing integrated circuits. However, silicon doping by ion implantation for photovoltaics is a relatively recent application, and its growth still faces high costs of integration into solar cell production lines. Plasma-immersion ion implantation (PIII) promises to meet the future industry requirements in terms of costs and productivity.This thesis work has led to the development of processes dedicated to silicon-based solar cell manufacturing using the plasma-immersion ion implanter – PULSION® – designed by IBS. First, we show that PIII enables the realization of various doping profiles for phosphorus-doped emitters which fit the requirements of high-efficiency solar cells. Emitters thus fabricated are chemically, physically and electrically characterized to demonstrate their excellent quality. Those emitters, implanted through plasma immersion and integrated into a low cost solar cell manufacturing line from INES on monocrystalline silicon, enable to raise the conversion efficiency, obtained with conventional POCl3-diffused solar cells, by more than 0.5% absolute to reach efficiencies above 19.3%.Fabrication of p-type boron implanted emitters is also studied in order to improve conversion efficiencies of p-type silicon based solar cells, but also in order to anticipate the technological shift from p-type to n-type silicon material. Thanks to this thesis work, the strength and potential of PIII for photovoltaic applications have been proven and this has convinced IBS to design a PULSION® equipment dedicated to solar cell manufacturing.
Identifer | oai:union.ndltd.org:theses.fr/2013AIXM4307 |
Date | 05 June 2013 |
Creators | Michel, Thomas |
Contributors | Aix-Marseille, Commandré, Mireille |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds