The viscoelastic behavior of concrete, nearly completely attributable to changes in properties in the cement paste, is an ongoing area of research with the objective of avoiding unpredictable response and potentially failure of concrete structures. This research explores the elastic and viscoelastic response in cement paste beams using relaxation testing, with and without strain reversals in the load history. It was seen that strain reversal imparts significant changes in mechanical response, retarding load relaxation. Companion beams were tested for chemical composition at varying depths in the beam section and the results were compared to those of control specimens not subject to stress. Results indicate significant variations in composition implying that stress accelerates the hydration process. The reasons behind the acceleration are discussed and incorporated into a preliminary solidification-dissolution model for beam relaxation. The model, though in need of improvement through further research, shows promise in potentially predicting relaxation in cement paste and by extension, in concrete structures. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/56988 |
Date | 28 October 2015 |
Creators | Galitz, Christopher Lee |
Contributors | Civil and Environmental Engineering, Roberts-Wollmann, Carin L., Grasley, Zachary, Foster, Earl Johan, Charney, Finley A., Mokarem, David W. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0026 seconds