Cemented paste backfill (CPB) is a novel technology developed in the past few decades to better manage mining wastes (such as tailings) in environmentally friendly way. It has received prominent interest in the mining industry around the world. In this technology, up to 60% of the total amount of tailings is reused and converted into cemented construction material that can be used for secondary support in underground mine openings (stopes) and to maximize the recovery of ore from pillars. CPB is an engineered mixture of tailings, water, and hydraulic binder (such as cement), that is mixed in the paste plant and delivered into the mine stopes either by gravity or pumping. During and after placing it into the mine stopes, the performance of CPB mainly depends on the role of the hydraulic binder, which increases the mechanical strength of the mixture through the process of cement hydration. Similar to other fine-grained soils undergoing cementations, CPB’s behavior is affected by several conditions or factors, such as cement hydration progress (curing time), chemistry of pore water, mixing and curing temperature, and filling strategy. Also, it has been found that fresh CPB placed in the mine stopes can be susceptible to many geotechnical issues, such as liquefaction under ground shaking conditions. Liquefaction-induced failure of CPB structure may cause injuries and fatalities, as well as significant environmental and economic damages. Many researches studied the effect of the aforementioned conditions on the static mechanical behavior of CPB. Other researches have evaluated the liquefaction behavior of natural soils and tailings (without cement) during cyclic loadings using shaking table test technique. Only few studies investigated the CPB liquefaction during dynamic loading events using the triaxial tests. Yet, there are currently no studies that addressed the liquefaction behavior of CPB under the previous conditions by using the shaking table technique. In this Ph.D. study, a series of shaking table tests were conducted on fresh CPB samples (75 cm × 75 cm ×70 cm), which were mixed and poured into a flexible laminar shear box (that was designed and build for the purpose of this research). Some of these shaking table tests were performed at different maturity ages of 2.5 hrs, 4.0 hrs, and 10.0 hrs, to investigate the effect of cement hydration progress on the liquefaction potential of CPB. Another set of tests were conducted to assess the effect of the chemistry (sulphate content) of the pore-water on the cyclic response of fresh CPB by exposing cyclic loads on couple of CPB models that contain different concertation of sulphate ions of 0.0 ppm and 5000 ppm. Moreover, as part of this study, series of shaking table test was conducted on CPB samples that were prepared and cured at different temperatures of 20oC and 35oC, to evaluate the effect of temperature of the cyclic behavior of CPB. Furthermore, the effect of filling strategy on the cyclic behavior of fresh CPB was assessed by conducting set of shaking tables tests on CPB models that were prepared at different filling strategies of continuous filling, and sequential or discontinuous (layered) filling. The results obtained show that CPB has different cyclic behavior and performance under these different conditions. It is observed that the progress of cement hydration (longer curing time) enhances the liquefaction resistance of CPB, while the presence of sulphate ions diminishes it. It is also found that CPB mixed and cured in low temperature is more prone to liquefaction than those prepared at higher temperatures. Moreover, the obtained results show that adopting the discontinuous (layered) filling strategy will improve the liquefaction resistance of CPB. The finding presented in this thesis will contribute to efficient, cost effective and safer design of CPB structures in the mine areas, and will help in minimizing the risks of liquefaction-induced failure of CPB structures.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/41524 |
Date | 01 December 2020 |
Creators | Alainachi, Imad Hazim |
Contributors | Fall, Mamadou |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds