• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 12
  • 1
  • Tagged with
  • 33
  • 33
  • 33
  • 19
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using Thermal Profiles of Cemented Paste Backfill to Predict Strength

Mozaffaridana, Mahsa 23 August 2011 (has links)
Measurement of the strength development of Cemented Paste Backfill in laboratory cast cylinders does not replicate the in situ strengths of CPB in mine stopes. The mass of CPB in a filled stope is large and temperature rises due to the heat of hydration of the cementing materials, thus accelerating the gain in strength, relative to laboratory specimens stored at ambient temperature. The purpose of this study was to determine the impact on strength development when CPB test cylinders were subjected to a temperature profile mimicking that in a large mass, such as a mine stope. Also, maturity (the integral of time and temperature during hydration of the CPB) was compared to actual strengths, and the maturity – strength concept used in concrete technology was applied. It was found that the strength- maturity relationship was applicable to CPB once the base line or datum temperature was adjusted.
2

Using Thermal Profiles of Cemented Paste Backfill to Predict Strength

Mozaffaridana, Mahsa 23 August 2011 (has links)
Measurement of the strength development of Cemented Paste Backfill in laboratory cast cylinders does not replicate the in situ strengths of CPB in mine stopes. The mass of CPB in a filled stope is large and temperature rises due to the heat of hydration of the cementing materials, thus accelerating the gain in strength, relative to laboratory specimens stored at ambient temperature. The purpose of this study was to determine the impact on strength development when CPB test cylinders were subjected to a temperature profile mimicking that in a large mass, such as a mine stope. Also, maturity (the integral of time and temperature during hydration of the CPB) was compared to actual strengths, and the maturity – strength concept used in concrete technology was applied. It was found that the strength- maturity relationship was applicable to CPB once the base line or datum temperature was adjusted.
3

Reactivity of Cemented Paste Backfill

Aldhafeeri, Zaid 13 September 2018 (has links)
Mining has been one of the main industries in the course of the development of human civilization and economies of various nations. However, every industry has issues, and one of the problems the mining industry has faced is the management of waste, especially sulphide-bearing tailings, which are considered to be a global environmental problem. This issue puts pressure on the mining industry to seek alternative approaches for tailings management. Among the several different types of methods used, cemented paste backfilling is one of the technologies that offers good management practices for the disposal of tailings in underground mines worldwide. Cemented paste backfill (CPB) is a cementitious composite made from a mixture of mine tailings, water and binder. This technology offers several advantages, such as improving the production and safety conditions of underground mines. Among these advantages, CPB is a promising solution for the management of sulphidic tailings, which are considered to be reactive materials (i.e., not chemically stable in an atmospheric condition) and the main source of acid mine drainage, which constitutes a serious environmental challenge faced by mining companies worldwide. Such tailings, if they come into direct contact with atmospheric elements (mainly oxygen and water), face oxidation of their sulphidic minerals, thus causing the release of acidic drainage (i.e., acid mine drainage) and several types of heavy metals into surrounding water bodies and land. Therefore, the reactivity of sulphidic tailings with and without cement content can be considered as a key indicator of the environmental behavior and durability performance of CPB systems. For a better understanding of the reactivity, it is important to investigate the influencing factors. In this research, several influencing factors are experimentally studied by conducting oxygen consumption tests on different sulphidic CPB mixtures as well as their tailings under different operational and environmental conditions. These factors include time, curing temperature, initial sulphate content, curing stress, mechanical damage, binder type and content, and the addition of mineral admixtures. In addition, several microstructural techniques (e.g., x-ray diffraction and scanning electron microscopy) are applied in order to understand the changes in the CPB matrices and identify newly formed products. The results reveal that the reactivity of CPB is affected by several factors (e.g., curing time, initial sulphate content, ageing, curing and atmospheric temperature, binder type and content, vertical curing stress, filling strategy, hydration and drainage, etc.), either alone or in combination. These factors can affect reactivity either positively or negatively. It is observed that CPB reactivity decreases with increasing curing time, temperature (i.e., curing and atmospheric temperatures), curing stress, binder content, the addition of mineral admixtures, degree of saturation, and the binder hydration process, whereas reactivity increases with increases in sulphide minerals (e.g., pyrite), initial sulphate content, mechanical damage, and with decreased degrees of saturation and binder content. The effect of sulphate on the reactivity of CPB is based on the initial sulphate content as well as curing time and temperature. It is concluded that the reactivity of CPB systems is time- and temperature-dependent with respect to other factors. Also, binders play a significant role in lowering CPB reactivity due to their respective hydration processes.
4

Temperature Dependence of the Leachability of Cemented Paste Backfill

Bull, Andrew 05 March 2019 (has links)
Underground mining is a mineral acquisition technique that is critical to global economies, and human technological advancements. As shallow resource reserves are depleted, mine depths are increasing to accommodate global mineral demand. Increases in mine throughputs and excavation depths pose increased environmental concerns. Tailings surface disposal, and underground mine support are two considerable environmental and geotechnical factors of concern in current day mining. Underground waste disposal has been adopted by the mining industry in many forms. Cemented paste backfill (CPB) is a common best management practice developed to tackle these two specific resource industry related issues worldwide. CPB is a cement-stabilized material composed of tailings, water, and hydraulic binder. Tailings disposal areas on the earth’s surface are reduced by disposing of tailings in subsurface stopes that have been previously excavated. This increases underground safety by providing structural support to the mine. There are also economic benefits to this practice, as the additional support allows for adjacent pillars to be excavated. Although CPB greatly reduces tailings exposure to atmospheric elements, there are still underground environmental factors that must be considered with respect to environmental performance. CPBs are porous media, meaning they are susceptible to leaching of naturally occurring metals that are no longer in a stable condition as they were when incorporated in the parent rock. Arsenic and lead are metals of concern due to their association with many ore bodies. Leaching of these unstable metals may be influenced by the backfill curing temperature and the chosen hydraulic binder. Curing temperatures may be influenced by geographic location, local stope geology and depth, hydration and transport, among others. Hydraulic binders are chosen based on availability, cost, and desired mechanical properties of the paste. In this research, the effect of curing temperature and binder composition on the leachability of CPB are studied. ASTM C 1308 leaching protocol is used to determine the leachability of six CPBs. In addition, microstructural techniques (Powder X-Ray Diffraction, Mercury Intrusion Porosimetry, and Scanning Electron Microscopy) are used to relate the microstructural properties of the CPB to the leaching characteristics. Results reveal that CPBs cured with ordinary Portland cement (OPC) leach significantly less than CPBs cured with an OPC/Blast furnace slag (Slag) binder (50% blending ratio) as a result of CH consumption in slag hydration. Both CH and C-S-H are responsible for immobilizing arsenic in cement stabilized materials. OPC-CPBs contain greater relative quantities of CH, which aids in arsenic immobilization. Between the range of 2°C and 35°C OPC-CPB performed better at lower curing temperatures. Lower curing temperatures are favoured in OPC-CPB because the pore surface greater than the threshold pore diameter is reduced. Alternatively, OPC/Slag-CPB exhibited a decrease in cumulative mass leached at higher curing temperatures. The difference in cumulative mass leached by the OPC/Slag-CPBs is also related to the pore surface, and threshold pore diameter.
5

Early Age Mechanical Behavior and Stiffness Development of Cemented Paste Backfill with Sand

Abdelaal, Abdullah 05 January 2012 (has links)
Rapid delivery of backfill to support underground openings attracted many mines to adopt paste backfilling methods. As a precaution to prevent liquefaction and to improve the mechanical performance of backfills, a small portion of a binder is added to the paste to form the cemented paste backfill (CPB). Recently, adding sand to mine tailings (MT) in CPB mixes has attracted attention since it enhances the flow and mechanical characteristics of the pastefill. This thesis investigates the effects of adding sand to CPB on the undrained mechanical behavior of the mixture (CPBS) under monotonic and cyclic loads. Liquefaction investigations took place at the earliest practically possible age. Beyond this age, the present research focused on characterizing the evolution of stiffness and obtaining the values of the stiffness parameters that could be useful for designing and modeling backfilling systems. The liquefaction investigation involved monotonic compression and extension triaxial tests. Neither flow nor temporary liquefaction was observed for all cemented and uncemented specimens under monotonic compression, while temporary liquefaction was observed for all specimens under monotonic extension. The addition of binder and sand to MT was found to slightly strengthen the pastefill in compression while weakening it in extension. Under cyclic loading, the addition of sand negatively impacted the cyclic resistance. However, binder was found to be more effective in the presence of sand. All specimens exhibited a cyclic mobility type of response. The evolution of effective stiffness parameters for two CPB-sand mixtures was monitored in a non-destructive triaxial test for five days. Self-desiccation was found to not be influential on the development of early age stiffness. Moreover, a framework is suggested to predict the undrained stiffness at degrees of saturation representative of the field. The credibility of the proposed test in providing stiffness parameters at representative strain levels of the field was verified.
6

Early Age Mechanical Behavior and Stiffness Development of Cemented Paste Backfill with Sand

Abdelaal, Abdullah 05 January 2012 (has links)
Rapid delivery of backfill to support underground openings attracted many mines to adopt paste backfilling methods. As a precaution to prevent liquefaction and to improve the mechanical performance of backfills, a small portion of a binder is added to the paste to form the cemented paste backfill (CPB). Recently, adding sand to mine tailings (MT) in CPB mixes has attracted attention since it enhances the flow and mechanical characteristics of the pastefill. This thesis investigates the effects of adding sand to CPB on the undrained mechanical behavior of the mixture (CPBS) under monotonic and cyclic loads. Liquefaction investigations took place at the earliest practically possible age. Beyond this age, the present research focused on characterizing the evolution of stiffness and obtaining the values of the stiffness parameters that could be useful for designing and modeling backfilling systems. The liquefaction investigation involved monotonic compression and extension triaxial tests. Neither flow nor temporary liquefaction was observed for all cemented and uncemented specimens under monotonic compression, while temporary liquefaction was observed for all specimens under monotonic extension. The addition of binder and sand to MT was found to slightly strengthen the pastefill in compression while weakening it in extension. Under cyclic loading, the addition of sand negatively impacted the cyclic resistance. However, binder was found to be more effective in the presence of sand. All specimens exhibited a cyclic mobility type of response. The evolution of effective stiffness parameters for two CPB-sand mixtures was monitored in a non-destructive triaxial test for five days. Self-desiccation was found to not be influential on the development of early age stiffness. Moreover, a framework is suggested to predict the undrained stiffness at degrees of saturation representative of the field. The credibility of the proposed test in providing stiffness parameters at representative strain levels of the field was verified.
7

Strength and Deformation Behaviour of Cemented Paste Backfill in Sub-zero Environment

Chang, Shuang January 2016 (has links)
Underground mining produces a huge amount of voids and an even larger quantity of mine waste. Overlooking these voids could lead to the possibility of ground subsidence, as well as safety issues during mining operation; while ignoring the waste, could cause environmental pollution and significant suffering. One solution to remedy both (the voids and the waste) is cemented paste backfill (CPB), which is gaining increased recognition in both the mining industry and academic research. Transforming tailings into cemented paste, and transporting this back to underground stopes, not only negates these safety issues to a large degree, but also makes it possible to put waste to good use.However, most studies involving CPB have been conducted at temperatures above 0°C; knowledge of CPB in sub-zero environments is still lacking. For this reason, this thesis investigates the mechanical behaviour of CPB in a the latter type of environment.Uniaxial compressive strength tests were carried out on a series of frozen CPB (FCPB) samples to evaluate the mechanical behaviour (e.g. compressive strengths, geotechnical features, and the stress-strain relationships) of FCPB. It has been discovered in this thesis that FCPB exhibits remarkable strength compared to CPB and, has a great resemblance to frozen soil. Factors which may affect the behaviour of FCPB were thoroughly examined. Binder contents and types were found to be irrelevant; water content, in contrast, plays a dominant role, with an optimum value of around 26% by weight. Sulphate was confirmed to have an adverse effect on the strength of FCPB due to the increasing unfrozen water content and the formation of legible ice lenses. Hydraulic conductivity tests, scanning electron microscope observations, thermal gravimetric analyses, and mercury intrusion porosimetry were also performed as subsidiary experiments to understand the geotechnical features of FCPB. This information will be of significant value for numerous practical applications.
8

Multiphysics Modeling and Simulation of the Behavior of Cemented Tailings Backfill

Cui, Liang January 2017 (has links)
One of the most novel technologies developed in the past few decades is to convert mine wastes into cemented construction materials, otherwise known as cemented tailings backfill (CTB). CTB is an engineered mixture of tailings (waste aggregates), water and hydraulic binders. It is extensively used worldwide to stabilize underground cavities created by mining operations and maximize the recovery of ore from pillars. Moreover, the application of CTB is also an environmentally friendly means of disposing potential acid generating tailings underground. During and after its placement into underground mine excavations or stopes, complex multiphysics processes (including thermal, T, hydraulic, H, mechanical, M, and chemical, C, processes) take place in the CTB mass and thus control its behavior and performance. With the interaction of the multiphysics processes, the field variables (temperature, pore water pressure, stress and strain) and geotechnical properties of CTB undergo substantial changes. Therefore, the prediction of the field performance of CTB structures during their life time, which has great practical importance, must incorporate these THMC processes. Moreover, the self-weight effect, water drainage through barricades, thermal expansion and chemical shrinkage can contribute to the volumetric deformation of CTB. Consequently, CTB exhibits unique consolidation behavior compared to conventional geomaterials (e.g., soil). Furthermore, the consolidation processes can result in relative displacement between the rock mass and CTB. The resultant rock mass/CTB interface resistance can reduce the effects of the overburden pressure or the vertical stress (i.e., arching effect). Hence, a full understanding, through multiphysics modeling and simulation of CTB behaviors, is crucial to reliably assess and predict the performance of CTB structures. Yet, there are currently no models or tools to predict the fully coupled multiphysics behavior of CTB. In this Ph.D. study, a series of mathematical models which include an evolutive elastoplastic model, a fully coupled THMC model, a multiphysics model of consolidation behavior and a multiphysics model of the interaction between the rock mass/CTB interface are developed and validated. There is excellent agreement between the modeled results and experimental and/or in-situ monitored data, which proves the accuracy and predictive ability of the developed models. Furthermore, the validated multiphysics models are applied to a series of engineering issues, which are relevant for the field design of CTB structures, to investigate the self-desiccation process, consolidation behavior of CTB structures as well as to assess the pressure on barricades and the strength development in CTB structures. The obtained results show that CTB has different behaviors and performances under different backfilling conditions and design strategies, and the developed multiphysics models can accurately model CTB field behavior. Therefore, the research conducted in this Ph.D. study provides useful tools and technical information for the optimal design of CTB structures.
9

Strength and Environmental Properties of Cemented Paste Backfill That Contains Sodium Silicate

Mohammad Pour, Hoda 10 September 2020 (has links)
Mining is an important industry that plays a significant role in the development of human civilization and economies. However, the underground mining process produces a large volume of mine wastes (e.g., tailings) as well as creates large voids that require filling, typically with an engineering backfill material. Filling the voids with mine waste materials provides an environmental-friendly way of disposing mining waste. It is also an effective way of increasing ore recovery and improving the safety of miners. One of the best techniques of mine backfill is called cemented paste backfill (CPB), which is typically a mixture of tailings, binder and water. The most common binder used in the preparation of CPB is Portland cement (PC). PC is not only a costly binder, but its production is highly energy-intensive and also generates a large amount of CO2. The cement consumption can represent up to 75% of the cost of CPB. These above-mentioned factors have compelled mining companies to seek for cement alternatives that enhance the engineering properties of the CPB, decrease the cement content and reduce the carbon footprint of the mining industry. Sodium silicate is the most recent chemical additive that is proposed to reduce the binder content in CPB. Sodium silicate is an alkaline solution that is used to activate a pozzolanic material, such as cement, slag and Fly ash. However, the effect of sodium silicate on the strength and key environmental properties (permeability or saturated hydraulic conductivity, reactivity) of CPB is not well understood. The objective of this thesis is to investigate the possibility of using sodium silicate as an activator in cemented paste backfill and obtain an improvement in the aforementioned engineering properties of CPB. In order to determine the effect of the sodium silicate on backfill properties, some CPB testing methods were developed to fulfill the objectives of this research. Thus, the evolution of hydraulic, mechanical and microstructural properties of CPB samples containing sodium silicate (SS-CPB) have been tested or monitored at different curing ages (1, 3, 7, 28 and 90 days) and different CPB mixtures as well. The results of these studies show that activating CPB with sodium silicate develop CPB strength faster than CPB samples without sodium silicate. In addition, hydraulic conductivity and reactivity results show a positive change in samples containing sodium silicate compared to free sodium silicate CPB samples. Indeed, this activation leads to decreasing permeability and reactivity due to the formation of cement hydration products and acceleration of the binder hydration process. Moreover, binder type and content in the presence of sodium silicate as an alkali activator in the CPB play a significant role in lowering hydraulic conductivity and reactivity of CPB.
10

Geotechnical Behaviour of Frozen Mine Backfills

Han, Fa Sen 28 September 2011 (has links)
This thesis presents the results of an investigation of factors which influence the geotechnical properties of frozen mine backfill (FMB). FMB has extensive application potential for mining in permafrost areas. The uniaxial compressive strength (UCS) of hardened backfill is often used to evaluate mine backfill stability. However, the deformation behaviour and stiffness of the FMB are also key design properties of interest. In this thesis, uniaxial compressive tests were conducted on FTB and FCPB samples. Information about the geotechnical properties of FMB is obtained. The effects of FMB mix components and vertical compression pressure on the geotechnical properties of FMB are discussed and summarized. An optimum total water content of 25%-35% is found in which the strength and the modulus of elasticity of the FTB are 1.4-3.2 MPa and 35-58 MPa, respectively. It is observed that a small amount (3-6%) of cement can significantly change the geotechnical properties of FTB.

Page generated in 0.1022 seconds