Return to search

Etude de modèles de dimères et partitions quantiques sur réseaux hexagonaux / Study of quantum dimer and partition models on honeycomb lattices

Les modèles de dimères quantiques (QDM's) ont une série de comportements intéressants, comme de l'ordre topologique et des phases de liquides de spin. Dans cette thèse, nous explorons ces modèles pour un réseaux hexagonal, ainsi que leur équivalence aux problèmes de partitions, un sujet qui fait partie du domaine de la combinatoire. Premièrement, nous étudions le modèle RK, pour lequel la question sur la présence d'une phase avec un gap non-nul restait encore ouverte. Nous décrivons un algorithme Monte-Carlo qui nous permet, entre autres résultats, d'accéder directement au gap du système. Deuxièmement, nous proposons une généralisation de ce modèle. Nous trouvons un diagramme de phase beaucoup plus complexe, avec des transitions de phase entre différents secteurs topologiques, et compatible avec le déconfinement de Cantor. Troisièmement, nous étudions l'application du modèle RK à des réseaux hexagonales associés à des problèmes de partitions planaires. Cela impose des nouvelles conditions de bord, et nous trouvons un nouveau comportement du modèle. Nous proposons aussi une méthode que utilise les propriétés de l'espace de configurations des problèmes de partitions pour réduire la complexité du QDM.Finalement, nous modélisons les problèmes de croissance et effondrement de coin de cristaux classiques dans le cadre des problèmes de partition, trouvant une transition souple entre des interfaces limites du type "amibe" et le cercle arctique. / The quantum dimer models (QDM's) have a series of interesting behaviors, such as topological order and spin liquid phases. In this thesis, we study these models for an honeycomb lattice, and also their equivalence with the partition problems, a subject of the domain of combinatorics. Firstly, we study the RK model, for which the question on whenever one of its phases is gapped or not was still open. We describe an Monte-Carlo algorithm that allows to, among other results, access this gap directly. Secondly, we propose a generalization of this model. We find a more complex phase diagram, with phase transitions between the different topological sectors, and compatible with the Cantor deconfinement. Thirdly, we study the application of the RK model to honeycomb lattices associated to the planar partition problems. This imposes new boundary conditions, and we find a new model behavior. We also propose a méthod that uses the properties of the partition problem's configuration space to reduce the complexity of the QDM. Finally, we modelize the problems of classical crystal corner growth and melting with the formalism of the partition problems, finding a smooth transition between the limit interfaces of type "amoebae" and the arctic circle.

Identiferoai:union.ndltd.org:theses.fr/2015PA066120
Date15 June 2015
CreatorsMilanetto Schlittler, Thiago
ContributorsParis 6, Mosseri, Rémy
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds