• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude de modèles de dimères et partitions quantiques sur réseaux hexagonaux / Study of quantum dimer and partition models on honeycomb lattices

Milanetto Schlittler, Thiago 15 June 2015 (has links)
Les modèles de dimères quantiques (QDM's) ont une série de comportements intéressants, comme de l'ordre topologique et des phases de liquides de spin. Dans cette thèse, nous explorons ces modèles pour un réseaux hexagonal, ainsi que leur équivalence aux problèmes de partitions, un sujet qui fait partie du domaine de la combinatoire. Premièrement, nous étudions le modèle RK, pour lequel la question sur la présence d'une phase avec un gap non-nul restait encore ouverte. Nous décrivons un algorithme Monte-Carlo qui nous permet, entre autres résultats, d'accéder directement au gap du système. Deuxièmement, nous proposons une généralisation de ce modèle. Nous trouvons un diagramme de phase beaucoup plus complexe, avec des transitions de phase entre différents secteurs topologiques, et compatible avec le déconfinement de Cantor. Troisièmement, nous étudions l'application du modèle RK à des réseaux hexagonales associés à des problèmes de partitions planaires. Cela impose des nouvelles conditions de bord, et nous trouvons un nouveau comportement du modèle. Nous proposons aussi une méthode que utilise les propriétés de l'espace de configurations des problèmes de partitions pour réduire la complexité du QDM.Finalement, nous modélisons les problèmes de croissance et effondrement de coin de cristaux classiques dans le cadre des problèmes de partition, trouvant une transition souple entre des interfaces limites du type "amibe" et le cercle arctique. / The quantum dimer models (QDM's) have a series of interesting behaviors, such as topological order and spin liquid phases. In this thesis, we study these models for an honeycomb lattice, and also their equivalence with the partition problems, a subject of the domain of combinatorics. Firstly, we study the RK model, for which the question on whenever one of its phases is gapped or not was still open. We describe an Monte-Carlo algorithm that allows to, among other results, access this gap directly. Secondly, we propose a generalization of this model. We find a more complex phase diagram, with phase transitions between the different topological sectors, and compatible with the Cantor deconfinement. Thirdly, we study the application of the RK model to honeycomb lattices associated to the planar partition problems. This imposes new boundary conditions, and we find a new model behavior. We also propose a méthod that uses the properties of the partition problem's configuration space to reduce the complexity of the QDM. Finally, we modelize the problems of classical crystal corner growth and melting with the formalism of the partition problems, finding a smooth transition between the limit interfaces of type "amoebae" and the arctic circle.
2

Effet Hall quantique fractionnaire dans des systèmes multicomposantes

Papic, Zlatko 23 September 2010 (has links) (PDF)
Nous étudions un certain nombre de manifestations de l'effet Hall quantique fractionnaire dans les bicouches d'effet Hall quantique, des puits quantiques larges ou le graphène, dans lesquels les degrés de liberté multicomposantes produisent des phénomènes physiques insolites. Dans la bicouche d'effet Hall quantique du remplissage total nu=1, nous examinons les fonctions d'onde mixtes des bosons composites et fermions composites afin de décrire la destruction de la suprafluidité excitonique au fur et à mesure qu'on augmente la distance entre les deux couches. Nous proposons des fonctions d'onde d'essai qui décriraient bien l'ètat de la bicouche quand il s'agit de distances intermédiaires et nous y ètudions leurs propriétés. Dans la bicouche d'effet Hall quantique du remplissage total nu=1/2 et nu=2/5, nous étudions la transition de phase quantique entre les états multicomposantes de Halperin et les phases polarisées (abeliannes et non-abeliannes) en fonction des modifications effectuées dans le terme tunnel. Afin d'étudier les transitions, nous utilisons à la fois la diagonalisation exacte et la théorie effective BCS. Nous présentons d'autre part un modèle réaliste du puits quantique large que nous utilisons dans l'examen des états avec un dénominateur pair, à nu=1/2 et nu=1/4 dans le plus bas niveau de Landau. Nous proposons enfin quelques états d'effet Hall quantique fractionnaire possibles dans le graphène, celles-ci reposant sur l'image multicomposante qui concerne les degrés de liberté de spin et de vallée.
3

Contribution à l’étude des chaînes de spin quantique avec une perturbation aléatoire ou apériodique / Contribution to the study of quantum spin chains with random or aperiodic perturbation

Voliotis, Dimitrios 05 December 2016 (has links)
Au cours de cette thèse, nous avons étudié le comportement critique de chaînes de spins quantiques en présence de couplages désordonnés ou répartis de manière apériodique. Il est bien établi que le comportement critique des chaînes de spins quantiques d’Ising et de Potts est gouverné par le même point fixe de désordre infini. Nous avons implémenté́ une version numérique de la technique de renormalisation de désordre infini (SDRG) afin de tester cette prédiction. Dans un second temps, nous avons étudié la chaîne quantique d’Ashkin-Teller désordonnée par renormalisation de la matrice densité́ (DMRG). Nous confirmons le diagramme de phase précédemment proposé en déterminant la position des pics du temps d’autocorrélation intégré des corrélations spin-spin et polarisation-polarisation ainsi que ceux des fluctuations de l’aimantation et de la polarisation. Enfin, l’existence d’une double phase de Griffiths est confirmée par une étude détaillée de la décroissance des fonctions d’autocorrélation en dehors des lignes critiques. Comme attendu, l’exposant dynamique diverge à l’approche de ces lignes. Dans le cas apériodique, nous avons étudié les chaînes quantiques d’Ising et de Potts. En utilisant la méthode SDRG, nous avons confirmé les résultats connus pour la chaîne d’Ising et proposé des estimations de la dimension d’échelle magnétique. Dans le cas du modèle de Potts à q états, nous avons estimé l’exposant magnétique et observé qu’il était indépendant du nombre d’états q pour toutes les séquences dont l’exposant de divagation est nul. Toutefois, nous montrons que l’exposant dynamique est fini et augmente avec le nombre d’états q. En revanche, pour la séquence de Rudin-Shapiro, les résultats sont compatibles avec un point fixe de désordre infini et donc un exposant dynamique infini. / In the present thesis, the critical and off-critical behaviors of quantum spin chains in presence of a random or an aperiodic perturbation of the couplings is studied. The critical behavior of the Ising and Potts random quantum chains is known to be governed by the same Infinite-Disorder Fixed Point. We have implemented a numerical version of the Strong-Disorder Renormalization Group (SDRG) to test this prediction. We then studied the quantum random Ashkin-Teller chain by Density Matrix Renormalization Group. The phase diagram, previously obtained by SDRG, is confirmed by estimating the location of the peaks of the integrated autocorrelation times of both the spin-spin and polarization-polarization autocorrelation functions and of the disorder fluctuations of magnetization and polarization. Finally, the existence of a double-Griffiths phase is shown by a detailed study of the decay of the off-critical autocorrelation functions. As expected, a divergence of the dynamical exponent is observed along the two transition lines. In the aperiodic case, we studied both the Ising and Potts quantum chains. Using numerical SDRG, we confirmed the known analytical results for the Ising chains and proposed a new estimate of the magnetic scaling dimension.For the quantum q-state Potts chain, we estimated the magnetic scaling dimension for various aperiodic sequences and showed that it is independent of q for all sequences with a vanishing wandering exponent. However, we observed that the dynamical exponent is finite and increases with the number of states q. In contrast, for the Rudin-Shapiro sequence, the results are compatible with an Infinite-Disorder Fixed Point with a diverging dynamical exponent, equipe de renormalization

Page generated in 0.1563 seconds