O óxido de cério (CeO2), quando dopado com óxidos de terras raras, tem sua condutividade iônica aumentada, possibilitando seu uso como eletrólito de Células a Combustível de Óxido Sólido de Temperatura Intermediária (IT-SOFC), que são operadas entre 500 e 700°C. Os aditivos ou dopantes mais eficientes para o aumento da condutividade iônica são a samária (óxido de samário Sm2O3) e a gadolínia (óxido de gadolínio Gd2O3), com concentrações molares entre 10 e 20%. Neste contexto foram sintetizados, neste trabalho, pós de composição Ce0,8(SmGd)0,2O1,9 pelas rotas de síntese por coprecipitação de hidróxidos, carbonatos e oxalatos. O efeito do tratamento hidrotérmico foi avaliado para pós precipitados com hidróxido de amônio. Utilizou-se, como matériasprimas, concentrados de terras raras contendo 90% em massa de CeO2 e outro contendo 51% de Sm2O3 e 30% de Gd2O3, ambos provenientes do processamento da monazita. Estes concentrados foram utilizados devido ao menor custo em relação às matérias-primas puras adquiridas comercialmente e a semelhança química dos demais elementos de terras raras contidos. Inicialmente, foram definidas as condições das etapas de coprecipitação e a influência da temperatura de calcinação nas características dos pós e produtos sinterizados. Os resultados obtidos mostraram que os pós calcinados na faixa de temperatura entre 450 e 800ºC apresentam elevada área de superfície específica (90-150 m2.g-1) e estrutura cristalina cúbica tipo fluorita da céria, indicando a formação da solução sólida. Observou-se, por microscopia eletrônica de varredura, que a forma das partículas e dos aglomerados é função do tipo de agente precipitante. As análises dilatométricas indicaram maior taxa de retração em temperatura próxima a 1300-1350ºC. Entretanto, valores elevados de densificação (>95% DT) são obtidos em temperaturas superiores a 1400ºC. A síntese por coprecipitação de hidróxidos seguida pelo tratamento hidrotérmico demonstrou ser uma rota promissora para cristalização, em baixas temperaturas (200oC), de nanopós à base de céria, mantendo-se elevados os valores de área de superfície específica (cerca de 100 m2.g-1). Cerâmicas com densificação superior a 95%DT foram obtidas em menores temperaturas de sinterização (1400oC), quando comparadas às provenientes de pós cristalizados por calcinação. / Cerium oxide (CeO2) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700°C. The most effective aditives or dopants for ionic condutivity improvement are (samarium oxide Sm2O3) and gadolinia (gadolinium oxide Gd2O3), fixing the concentration between 10 and 20 molar%. In this work, Ce0,8(SmGd)0,2O1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO2 and other containing 51% of Sm2O3 and 30% of Gd2O3, both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800°C presented high specific surface area (90 - 150 m2.g-1) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350°C. High densification values (>95% TD) was obtained at temperatures above 1400ºC. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nanopowders at low temperatures (200oC). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m2.g-1). High density ceramics were obtained at lower temperatures (1400oC), compared to those employed for calcined powders.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02082011-155254 |
Date | 23 February 2010 |
Creators | Alexander Rodrigo Arakaki |
Contributors | Dolores Ribeiro Ricci Lazar, Eliana Navarro dos Santos Muccillo, Rosa Maria da Rocha |
Publisher | Universidade de São Paulo, Tecnologia Nuclear, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds