Au cours des deux dernières décennies, le contexte économique a changé de manière significative en raison de la hausse des prix de l'énergie. Le bâtiment étant devenu le principal secteur consommateur d'énergie, la réduction de celle-ci est devenue un objectif économique, sociétal et environnemental. Ce sujet mobilise de nombreux travaux de recherche. Les Matériaux à Changement de Phase (MCP) représentent une solution innovante qui pourrait contribuer à améliorer la performance énergétique des bâtiments. Ils sont principalement utilisés pour la régulation de température, et leur forte capacité de stockage est un moyen de réduire la consommation d'énergie. Notre étude vise à caractériser, via une approche expérimentale et numérique, le comportement d'un PCM (l’Octadécane). Pour cela, nous avons développé et mis en œuvre un modèle numérique qui corrobore les résultats expérimentaux, et ainsi améliore la prédiction de la performance du MCP considéré.Dans ce travail, notre principale préoccupation est de mettre en évidence les erreurs ou simplifications présentes dans le modèle numérique traditionnel pouvant entraîner un écart global par rapport au comportement réel du MCP. Ces différences conduisent à une estimation erronée des temps de fusion et de la quantité d'énergie stockée. L'amélioration significative de notre modèle est la prise en compte de la convection naturelle, de la surfusion, et l'utilisation des courbes réelles d'enthalpie du MCP considéré. La relation température-enthalpie réelle tient compte de la présence d'une fraction d'impuretés solubles dans le matériau. L’originalité de ce travail est de traiter ces phénomènes physiques via la méthode de Boltzmann réseau (connue sous l'acronyme LBM) avec des fonctions de distribution doubles couplée à une formulation enthalpique. Une telle approche permet de passer outre la non-linéarité des équations régissant l'écoulement et le transfert de chaleur. Sa simplicité de mise en œuvre et son caractère local permettent d'affiner le modèle. Ainsi, on peut couvrir les problèmes de changement de phase, y compris ceux pouvant avoir lieu dans des matrices poreuses ou fibreuses. Ce dernier point a été couvert dans cette thèse.Enfin, il s'est avéré que l'approche numérique adoptée ici pour traiter les problèmes de changement de phase corrobore à la fois nos résultats expérimentaux et ceux disponibles dans la littérature. / Over the past two decades, the economic context has changed significantly due to the rise in energy prices. The building sector has become the main consumer of energy. Thereby, reducing the latter is now an economic, societal and environmental necessity. Accordingly, this topic mobilizes many researches. Phase Change Materials (PCMs) represent an innovative solution, which could improve buildings' energy performance. They are primarily used for temperature regulation, and their high storage capacity can reduce energy consumption.Our study aims at characterizing, via a complementary approach of experimental and numerical simulation, the behavior of a PCM (n-Octadecane). For this, we have developed and implemented a numerical model that corroborates the experimental results, and hence improves the prediction of the PCM performance.In this work, our main concern is to highlight the common errors or simplifications taken in the traditional numerical model, which can result in an overall discrepancy compared to the actual behavior of PCMs. Those discrepancies lead to wrong estimation of the fusion times and amount of energy stored. The major improvement of our model is the consideration of the natural convection, the supercooling, and the use of real enthalpy curves of the considered PCM. The actual temperature-enthalpy relationship takes into account the presence of a fraction of soluble impurities in the material. The originality of this work is to handle these physical phenomena via a lattice Boltzmann method (known by the acronym LBM), which leans on double distribution functions and coupled with the enthalpy formulation. Such an approach overcomes the non-linearity in the governing equations of fluid flow and heat transfer. Its simplicity and local character allow adding complexity to the model. Thereby, one can cover up the phase change problems, including those, which may occur in heterogeneous matrices. This last point has been also covered in this thesis.Finally, it turned out that the approach implemented here for phase change problems supports both, our experimental results and those available in the literature.
Identifer | oai:union.ndltd.org:theses.fr/2015ARTO0207 |
Date | 14 December 2015 |
Creators | Yehya, Alissar |
Contributors | Artois, Naji, Hassan, Zalewski, Laurent |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds