Return to search

The Applicability of the Tap-Delay Line Channel Model to Ultra Wideband

Ultra-wideband (UWB) communication systems are highly promising because of their capabilities for high data rate information transmission with low power consumption and low interference and their immunity to multipath fading. More importantly, they have the potential to relieve the "spectrum drought" caused by the explosion of wireless systems in the past decade by operating in the same bands as existing narrowband systems. With the extremely large bandwidth of UWB signals, we need to revisit UWB channel modeling. Specifically we need to verify whether or not the traditional tap-line delay channel model is still applicable to UWB.

One essential task involved in channel modeling is deconvolving the channel impulse response from the measurement data. Both frequency domain and time domain techniques were studied in this work. After a comparison, we examined a time domain technique known as the CLEAN algorithm for our channel modeling analysis. A detailed analysis of the CLEAN algorithm is given, as it is found that it is sufficient for our application.

The impact of per-path pulse distortion due to various mechanisms on the tap-delay line channel model is discussed. It is shown that with cautious interpretation of the channel impulse response, the tap-line delay channel model is still applicable to UWB. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35217
Date30 September 2004
CreatorsYang, Liu
ContributorsElectrical and Computer Engineering, Buehrer, R. Michael, Woerner, Brian D., Annamalai, Annamalai Jr.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationETD_LYANG.pdf

Page generated in 0.0018 seconds