Return to search

Equilibrium and kinetics studies of hydrogen storage onto hybrid activated carbon-metal organic framework adsorbents produced by mild syntheses / Etudes à l’équilibre et cinétiques du stockage d’hydrogène sur adsorbants hybrides réseaux organo-métalliques-charbon actif produits par synthèses douces

Depuis une quinzaine d’années, les matériaux poreux de type Metal Organic Frameworks (MOFs) offrent de nouvelles perspectives dans le cadre du stockage d’hydrogène par adsorption. Ces matériaux possèdent une structure et un réseau de pores particulièrement bien adaptés à l’adsorption des gaz. Ainsi, le téréphtalate de Chrome (III) (MIL-101(Cr)), composé chimiquement très stable, possède une grande capacité de stockage de l’hydrogène, du dioxyde de carbone et du méthane. Afin de renforcer sa capacité de stockage d’hydrogène, un dopage au charbon actif (AC) du matériau a été envisagé. Les synthèses des matériaux dopés et non-dopés ont été réalisées et, pour cela, différents agents minéralisants (acide fluorhydrique, acide acétique et acétate de sodium) ont été testés. Les matériaux synthétisés furent caractérisés par diffraction des rayons X (DRX), par microscopie électronique à balayage (MEB), par analyses thermogravimétriques (ATG) et par adsorption d’azote à 77K. Les capacités de stockage d’hydrogène de ces matériaux à 77 K et 100 bar ont été évaluées par mesures des isothermes d’adsorption d’hydrogène, réalisées par méthodes volumétrique et gravimétrique. Les résultats obtenus par ces deux méthodes sont en parfait accord et le matériau composite affiche une capacité d’adsorption de 13.5 wt%, qui est supérieure à celle du matériau non dopé (8.2 wt% dans les même conditions expérimentales). Les cinétiques d’adsorption ont été mesurées à 77 K par méthode volumétrique. Les résultats obtenus ont été comparés au modèle de la force motrice linéaire, Linear Driving Force (LDF). Un modèle de diffusion dépendant de la température a été développé afin de tenir compte des variations de températures qui se produisent durant le processus d’adsorption. / Since the last 15 years, the porous solids such as Metal-Organic Frameworks (MOFs) have opened new perspectives for the development of adsorbents for hydrogen storage. The structure and the pore networks of these materials are especially adapted to the adsorption of gases. The chromium (III) terephthalate-based MIL-101(Cr) is a very stable material which exhibits good adsorption uptakes for hydrogen (H2), carbon dioxide (CO2) and methane (CH4).In this study, syntheses were carried out by different ways and several mineralizing agents such as hydrofluoric acid (HF), acetic acid (CH3COOH) and sodium acetate (CH3COONa) have been tested. Moreover, Activated Carbon (AC) has been introduced in the framework to create an AC incorporated composite material with an enhanced specific surface area. Conventional techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and nitrogen (N2) adsorption isotherms at 77 K were used for materials characterizations.In the aim to evaluate hydrogen storage capacities of these materials, hydrogen adsorption isotherms were measured at 77 K via both volumetric and gravimetric methods, and the obtained results are in good agreement. A hydrogen uptake value of 13.5 wt% has been measured at 77 K and 100 bar for the composite material which shows a great improvement of hydrogen capacity compared to the pristine MIL-101(Cr) (8.2 wt%).Finally, hydrogen adsorption kinetics has been measured at 77 K using volumetric method. The obtained results were compared to the Linear Driving Force (LDF) and a temperature dependent diffusion model was also considered to take into account the temperature variations which occur during the adsorption process.

Identiferoai:union.ndltd.org:theses.fr/2016EMNA0236
Date10 February 2016
CreatorsYu, Zhewei
ContributorsNantes, Ecole des Mines, Pré-Goubelle, Pascaline
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0029 seconds