Nesta tese é apresentado um novo workflow de simulação para avaliar o desempenho do balanceamento de carga dinâmico baseado em sobre-decomposição aplicado a aplicações paralelas iterativas. Seus objetivos são realizar essa avaliação com modificações mínimas da aplicação e a baixo custo em termos de tempo e de sua necessidade de recursos computacionais. Muitas aplicações paralelas sofrem com desbalanceamento de carga dinâmico (temporal) que não pode ser tratado a nível de aplicação. Este pode ser causado por características intrínsecas da aplicação ou por fatores externos de hardware ou software. Como demonstrado nesta tese, tal desbalanceamento é encontrado mesmo em aplicações cujo código não aparenta qualquer dinamismo. Portanto, faz-se necessário utilizar mecanismo de balanceamento de carga dinâmico a nível de runtime. Este trabalho foca no balanceamento de carga dinâmico baseado em sobre-decomposição. No entanto, avaliar e ajustar o desempenho de tal técnica pode ser custoso. Isso geralmente requer modificações na aplicação e uma grande quantidade de execuções para obter resultados estatisticamente significativos com diferentes combinações de parâmetros de balanceamento de carga Além disso, para que essas medidas sejam úteis, são usualmente necessárias grandes alocações de recursos em um sistema de produção. Simulated Adaptive MPI (SAMPI), nosso workflow de simulação, emprega uma combinação de emulação sequencial e replay de rastros para reduzir os custos dessa avaliação. Tanto emulação sequencial como replay de rastros requerem um único nó computacional. Além disso, o replay demora apenas uma pequena fração do tempo de uma execução paralela real da aplicação. Adicionalmente à simulação de balanceamento de carga, foram desenvolvidas técnicas de agregação espacial e rescaling a nível de aplicação, as quais aceleram o processo de emulação. Para demonstrar os potenciais benefícios do balanceamento de carga dinâmico com sobre-decomposição, foram avaliados os ganhos de desempenho empregando essa técnica a uma aplicação iterativa paralela da área de geofísica (Ondes3D). Adaptive MPI (AMPI) foi utilizado para prover o suporte a balanceamento de carga dinâmico, resultando em ganhos de desempenho de até 36.58% em 288 cores de um cluster Essa avaliação também é usada pra ilustrar as dificuldades encontradas nesse processo, assim justificando o uso de simulação para facilitá-la. Para implementar o workflow SAMPI, foi utilizada a interface SMPI do simulador SimGrid, tanto no modo de emulação, como no de replay de rastros. Para validar esse simulador, foram comparadas execuções simuladas (SAMPI) e reais (AMPI) da aplicação Ondes3D. As simulações apresentaram uma evolução do balanceamento de carga bastante similar às execuções reais. Adicionalmente, SAMPI estimou com sucesso a melhor heurística de balanceamento de carga para os cenários testados. Além dessa validação, nesta tese é demonstrado o uso de SAMPI para exploração de parâmetros de balanceamento de carga e para planejamento de capacidade computacional. Quanto ao desempenho da simulação, estimamos que o workflow completo é capaz de simular a execução do Ondes3D com 24 combinações de parâmetros de balanceamento de carga em 5 horas para o nosso cenário de terremoto mais pesado e 3 horas para o mais leve. / In this thesis we present a novel simulation workflow to evaluate the performance of dynamic load balancing with over-decomposition applied to iterative parallel applications at low-cost. Its goals are to perform such evaluation with minimal application modification and at a low cost in terms of time and of resource requirements. Many parallel applications suffer from dynamic (temporal) load imbalance that can not be treated at the application level. It may be caused by intrinsic characteristics of the application or by external software and hardware factors. As demonstrated in this thesis, such dynamic imbalance can be found even in applications whose codes do not hint at any dynamism. Therefore, we need to rely on runtime dynamic load balancing mechanisms, such as dynamic load balancing based on over-decomposition. The problem is that evaluating and tuning the performance of such technique can be costly. This usually entails modifications to the application and a large number of executions to get statistically sound performance measurements with different load balancing parameter combinations. Moreover, useful and accurate measurements often require big resource allocations on a production cluster. Our simulation workflow, dubbed Simulated Adaptive MPI (SAMPI), employs a combined sequential emulation and trace-replay simulation approach to reduce the cost of such an evaluation Both sequential emulation and trace-replay require a single computer node. Additionally, the trace-replay simulation lasts a small fraction of the real-life parallel execution time of the application. Besides the basic SAMPI simulation, we developed spatial aggregation and applicationlevel rescaling techniques to speed-up the emulation process. To demonstrate the real-life performance benefits of dynamic load balance with over-decomposition, we evaluated the performance gains obtained by employing this technique on a iterative parallel geophysics application, called Ondes3D. Dynamic load balancing support was provided by Adaptive MPI (AMPI). This resulted in up to 36.58% performance improvement, on 288 cores of a cluster. This real-life evaluation also illustrates the difficulties found in this process, thus justifying the use of simulation. To implement the SAMPI workflow, we relied on SimGrid’s Simulated MPI (SMPI) interface in both emulation and trace-replay modes.To validate our simulator, we compared simulated (SAMPI) and real-life (AMPI) executions of Ondes3D. The simulations presented a load balance evolution very similar to real-life and were also successful in choosing the best load balancing heuristic for each scenario. Besides the validation, we demonstrate the use of SAMPI for load balancing parameter exploration and for computational capacity planning. As for the performance of the simulation itself, we roughly estimate that our full workflow can simulate the execution of Ondes3D with 24 different load balancing parameter combinations in 5 hours for our heavier earthquake scenario and in 3 hours for the lighter one.
Identifer | oai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/180129 |
Date | January 2018 |
Creators | Tesser, Rafael Keller |
Contributors | Navaux, Philippe Olivier Alexandre, Legrand, Arnaud |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds