Studiens syfte är att bedöma till vilken utsträckning AI kan ersätta en människa i rollen som mjukvaruutvecklare utifrån ett kvalitativt perspektiv på kod. Detta görs genom att besvara forskningsfrågorna som lyder: “Hur använder mjukvaruutvecklare sig av generativ AI vid utvecklingsutmaningar?” och “Vad är mjukvaruutvecklares uppfattning om kvaliteten på autogenererad kod skapad av en generativ AI såsom Chat GPT?”. För att besvara frågorna har en kvalitativ metod applicerats. En litteraturundersökning startade studien och tillsammans med en ny modell som baseras på McCall quality model och Boehm quality model. Från detta har en intervjuguide skapats som används i semistrukturerade intervjuer genomförda med erfarna mjukvaruutvecklare. Resultatet visar att kod skapad av generativ AI är ett bra hjälpmedel och verktyg som kan effektivisera en mjukvaruutvecklare och att det används på det sättet idag. Däremot så visar resultaten också att koden som genereras av en generativ AI inte är tillräckligt bra och kan inte användas utan att förändringar eller åtgärder görs då det saknas kvalitet. Slutsatserna som dras är att mjukvaruutvecklare använder sig av generativ AI som ett hjälpmedel men att AI:n inte är kapabel att hantera en uppgift på egen hand, därav är det inget hot mot någon anställning för mjukvaruutvecklare. Framtida forskning bör göras på autogenererad kod. Fler verktyg bör undersökas för att utvidga kunskapen om dess kapacitet samt bör det undersökas vilken inverkan generativ AI kan ha på andra branscher. / The aim of this study, conducted and written in Swedish, is to assess the potential of replacing a human software developer with generative AI. The study evaluates the quality of code generated by a generative AI model, this is done by answering the following research questions: “How do software developers use generative AI for development challenges'' and “How do software developers perceive the quality of code autogenerated by a generative AI such as Chat GPT”. To answer the questions we employ a qualitative research method. The study began with a literature review and based our evaluation of software quality on a hybrid model that modifies and combines McCall quality model and Boehm software quality model. The literature review and the hybrid model was used as a base to shape an interview guide. The interview guide was used in semistructured interviews conducted with experienced software developers. The results suggest that autogenerated code from generative AI is a viable aid for software developers as it makes them more effective in a number of tasks. However, the results also show that the autogenerated AI code has insufficient quality as a complete solution, and therefore often requires further fine-tuning and improvements from software developers. From the results, we conclude that software developers do use generative AI as a tool while writing code. Generative AI enhances software developers effectiveness but the current state of generative AI cannot fully replace a human software developer hence it is not a threat to any employment. Future research should be conducted on auto generated code. Some more tools should be studied to broaden the knowledge on its capabilities as well as looking at the implications that generative AI have on other industries.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hb-31121 |
Date | January 2023 |
Creators | Gustafsson, Anton, Kristensson, Martin |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds