Return to search

Controlling Factors Of Life Cycle And Distribution Of Chironomid Key Species In The Mesotrophic Saidenbach Reservoir

In den Jahren 2005 bis 2010 erfolgte im Rahmen der Erarbeitung der vorliegenden Dissertationsschrift eine ökologische Untersuchung der Chironomidenfauna in der Talsperre Saidenbach (Sachsen, Erzgebirge). Drei Arten mit hoher Abundanz konnten bei der umfassenden Artenanalyse im Jahr 2005 ermittelt werden: Procladius crassinervis, P. choreus und Chironomus anthracinus. Zusätzlich wurde die Art C. plumosus aufgrund ihrer engen Verwandtschaft zu C. anthracinus in die Untersuchung einbezogen. Die Arbeit ist auf vier Schwerpunkte fokussiert, wobei die Larven und Puppen der vier Arten analysiert wurden. (1) Die Erarbeitung einer zuverlässigen Methode zur Unterscheidung der Larven der beiden eng verwandten Procladius-Arten basierend auf morphologischen Kriterien (Imaginalscheiden-entwicklung, Kopfkapselgröße und Körperlänge) sowie die Tiefenverteilung der Puppen waren eine Vorbedingung für weiterführende Analysen des Lebenszyklus (LZ) dieser beiden Arten. (2) Die Untersuchung des LZ war der zweite Schwerpunkt. Der LZ wurde stark von abiotischen Faktoren wie Temperatur, Sauerstoff und Biovolumen des Phytoplanktons kontrolliert. (3) Die raum-zeitlichen Verteilungsmuster der vier Arten wurden zunächst bezüglich großräumiger Unterschiede über einen Tiefengradienten innerhalb eines Transektes analysiert. Hierbei zeigte sich bei allen vier Arten eine zeitliche Änderung im jeweiligen Hauptverbreitungsgebiet. Die jungen Larven von C. anthracinus, C. plumosus und P. choreus wanderten im Verlauf ihrer Entwicklung bis zur Verpuppung in flachere Bereiche, P. crassinervis wanderte in tiefere Bereiche. Die Analyse der Verteilungsunterschiede der Larven zwischen zwei verschieden stark eutrophierten Buchten ergab höhere Dichten der beiden Chironomus-Arten in der Bucht mit dem größeren Zulauf und der höheren Phytoplanktonkonzentration im Vergleich mit den anderen Arten. Eine Analyse des kleinräumigen Verteilungsmusters fokussierte auf der Frage, ob die Larven gleichmäßig verteilt oder aggregiert auftraten. Die Untersuchung des vertikalen Verteilungsmusters erforschte das Schwimmverhalten der Larven. (4) Der letzte Aspekt war eine experimentelle Untersuchung, die am Beispiel von C. anthracinus durchgeführt wurde mit dem Ziel, den Proximatfaktor für die beobachtete Wanderung der Larven zu ermitteln, der letztendlich die Temperatur war. Puppen bevorzugten im Experiment wärmere Temperaturen und junge Larven kühlere Temperaturen. Die fünfjährige Untersuchung der Chironomiden in der Talsperre Saidenbach beschreibt insgesamt die komplexe Verhaltensreaktion der Chironomiden, die einen wesentlichen Teil der benthischen Lebensgemeinschaft darstellen, bezüglich der Lebenszyklusmuster (Voltinismus, Verpuppung), der Abundanzänderungen (inner- und zwischenjährlich) sowie der groß- und kleinräumigen Verteilung unter der Einwirkung der wichtigsten Umweltfaktoren.:1. GENERAL INTRODUCTION

2. MORPHOLOGICAL DIFFERENTIATION OF TWO PROCLADIUS AND TWO
CHIRONOMUS SPECIES IN THE MESOTROPHIC SAIDENBACH RESERVOIR
2.1 Introduction
2.2 Material and methods
2.2.1 Sampling of larvae
2.2.2 Species identification
2.2.3 Differentiation of the Procladius species by means of head capsule
size and depth distribution
2.2.4 Other morphological criteria
2.2.5 Development of imaginal discs
2.3. Results
2.3.1 Procladius crassinervis and P. choreus
2.3.2 Chironomus anthracinus and C. plumosus
2.4. Discussion
2.4.1 Method discussion
2.4.2 Head capsule width
2.4.3 Larval growth

3. FIVE - YEAR LIFE CYCLE PATTERN OF TWO PROCLADIUS AND TWO
CHIRONOMUS SPECIES IN THE MESOTROPHIC SAIDENBACH
RESERVOIR
3.1 Introduction
3.2 Material and methods
3.2.1 Study area
3.2.2 Sampling of chironomid larvae
3.2.3 Sampling of chironomid pupae
3.2.4 Mortality
3.2.5 Abiotic conditions and phytoplankton
3.3 Results
3.3.1 Abiotic conditions and phytoplankton
3.3.1.1 Temperature
3.3.1.2 Oxygen
3.3.1.3 Phytoplankton
3.3.2 Life cycle analysis
3.3.2.1 Composition of instars
3.3.2.2 Procladius crassinervis
3.3.2.3 Procladius choreus
3.3.2.4 Chironomus anthracinus
3.3.2.5 Chironomus plumosus
3.3.2.6 Tanytarsini
3.3.2.7 Other species
3.3.3 Influence of abiotic conditions on pupation and life cycle
3.3.3.1 Procladius crassinervis
3.3.3.2 Procladius choreus
3.3.3.3 Chironomus anthracinus
3.3.3.4 Chironomus plumosus
3.3.3.5 Tanytarsini
3.3.4 Mortality of larvae during pupation
3.4 Discussion
3.4.1 Method discussion
3.4.2 Life cycle
3.4.3 Influence of controlling factors
3.4.4 Larval mortality and chironomid pupae as prey

4. SMALL AND LARGE SCALE DISTRIBUTION ASPECTS AND MIGRATION
OF TWO PROCLADIUS AND TWO CHIRONOMUS SPECIES IN THE
MESOTROPHIC SAIDENBACH RESERVOIR
4.1 Introduction
4.2 Study area
4.3 Material and methods
4.3.1 Sampling of chironomid pupae
4.3.2 Sampling of chironomid larvae
4.3.3 Large scale distribution
4.3.3.1 Depth gradient of the larval abundance
4.3.3.2 Distribution between different lake areas
4.3.4 Small scale distribution - patchiness
4.3.5 Vertical distribution
4.3.5.1 Residence depth in the sediment
4.3.5.2 Larvae in the water column
4.4 Results
4.4.1 Large scale distribution
4.4.1.1 Depth gradient of the larval abundance
4.4.1.2 Distribution between different lake areas
4.4.2 Small scale distribution - patchiness
4.4.3 Vertical distribution
4.4.3.1 Residence depth in the sediment
4.4.3.2 Larvae in the water column
4.5 Discussion
4.5.1 Large scale distribution
4.5.1.1 Depth gradient of the larval abundance
4.5.1.2 Distribution between different lake areas
4.5.2 Small scale distribution - patchiness
4.5.3 Vertical distribution
4.5.3.1 Residence depth in the sediment
4.5.3.2 Larvae in the water column

5. INVESTIGATIONS ON THE PREFERENCE TEMPERATURE OF
C. ANTHRACINUS FROM THE MESOTROPHIC SAIDENBACH RESERVOIR
5.1 Introduction
5.2 Material and methods
5.2.1 Influence of temperature on the timing of pupation
5.2.2 Preference temperature
5.2.3 Locomotory activity of larvae
5.3 Results
5.3.1 Migratory activity of C. anthracinus in the field
5.3.2 Influence of temperature on the timing of pupation
5.3.3 Preference temperature
5.3.4 Locomotory activity of larvae
5.4 Discussion
5.4.1 Influence of temperature on the timing of pupation
5.4.2 Preference temperature
5.4.3 Agitation activity of larvae

6. OVERALL SUMMARY AND FUTURE PROSPECTS
7. REFERENCES
EIDESSTATTLICHE ERKLÄRUNG
DANKSAGUNG / In the context of the present dissertation an ecological study was performed about chironomids in Saidenbach Reservoir in the Saxony Ore Mountains, Germany during the five years from 2005 to 2010. A preliminary overall species analysis in 2005 showed that three species were most abundant: Procladius crassinervis, P. choreus and Chironomus anthracinus. Additionally, the species C. plumosus was examined because of its close relationship to C. anthracinus. The study is focussed on four subjects, whereby larvae and pupae of the four species were analysed. (1) The elaboration of a reliable method to distinguish the larvae of the two closely related species P. crassinervis and P. choreus on the basis of morphological criteria (imaginal disc development, larval head capsule size and body length) as well as the depth distribution of their pupae was a precondition to the profound analysis of their life cycles. (2) The investigation of the life cycle pattern of the four species was the second focus. The life cycle of the four species was found to be strongly influenced by abiotic conditions such as temperature, oxygen and biovolume of the phytoplankton. (3) The spatial and temporal distribution pattern of the four species was analysed in view of large scale differences over a depth gradient in one transect. Here, in all four species a shift in the mainly settled lake bottom area occurred. The young larvae of C. anthracinus, C. plumosus and P. choreus migrated during maturing and pupation towards shallower areas; P. crassinervis migrated to deeper areas. The distribution differences between two different bays showed that the two Chironomus species had higher densities in the bay with the higher inflow which resulted in a higher phytoplankton standing stock compared to the other species. A small scale distribution pattern analysis focussed on finding out whether the larvae were aggregated or randomly distributed. The vertical distribution analysis examined the swimming behaviour of the larvae. (4) The last aspect was an experimental setup exemplarily driven with C. anthracinus which showed that the migration was stimulated by the proximate factor temperature as pupae preferred warmer temperatures and young larvae colder temperatures. Altogether, the five year study about chironomids in Saidenbach Reservoir pointed out the complex reaction in the behaviour of an important part of the benthic community concerning the life cycle pattern (voltinism, pupation pattern), the changing in abundances (inter-annual and intra-annual) and the large scale and small scale distribution pattern under the rule of the most important environmental factors.:1. GENERAL INTRODUCTION

2. MORPHOLOGICAL DIFFERENTIATION OF TWO PROCLADIUS AND TWO
CHIRONOMUS SPECIES IN THE MESOTROPHIC SAIDENBACH RESERVOIR
2.1 Introduction
2.2 Material and methods
2.2.1 Sampling of larvae
2.2.2 Species identification
2.2.3 Differentiation of the Procladius species by means of head capsule
size and depth distribution
2.2.4 Other morphological criteria
2.2.5 Development of imaginal discs
2.3. Results
2.3.1 Procladius crassinervis and P. choreus
2.3.2 Chironomus anthracinus and C. plumosus
2.4. Discussion
2.4.1 Method discussion
2.4.2 Head capsule width
2.4.3 Larval growth

3. FIVE - YEAR LIFE CYCLE PATTERN OF TWO PROCLADIUS AND TWO
CHIRONOMUS SPECIES IN THE MESOTROPHIC SAIDENBACH
RESERVOIR
3.1 Introduction
3.2 Material and methods
3.2.1 Study area
3.2.2 Sampling of chironomid larvae
3.2.3 Sampling of chironomid pupae
3.2.4 Mortality
3.2.5 Abiotic conditions and phytoplankton
3.3 Results
3.3.1 Abiotic conditions and phytoplankton
3.3.1.1 Temperature
3.3.1.2 Oxygen
3.3.1.3 Phytoplankton
3.3.2 Life cycle analysis
3.3.2.1 Composition of instars
3.3.2.2 Procladius crassinervis
3.3.2.3 Procladius choreus
3.3.2.4 Chironomus anthracinus
3.3.2.5 Chironomus plumosus
3.3.2.6 Tanytarsini
3.3.2.7 Other species
3.3.3 Influence of abiotic conditions on pupation and life cycle
3.3.3.1 Procladius crassinervis
3.3.3.2 Procladius choreus
3.3.3.3 Chironomus anthracinus
3.3.3.4 Chironomus plumosus
3.3.3.5 Tanytarsini
3.3.4 Mortality of larvae during pupation
3.4 Discussion
3.4.1 Method discussion
3.4.2 Life cycle
3.4.3 Influence of controlling factors
3.4.4 Larval mortality and chironomid pupae as prey

4. SMALL AND LARGE SCALE DISTRIBUTION ASPECTS AND MIGRATION
OF TWO PROCLADIUS AND TWO CHIRONOMUS SPECIES IN THE
MESOTROPHIC SAIDENBACH RESERVOIR
4.1 Introduction
4.2 Study area
4.3 Material and methods
4.3.1 Sampling of chironomid pupae
4.3.2 Sampling of chironomid larvae
4.3.3 Large scale distribution
4.3.3.1 Depth gradient of the larval abundance
4.3.3.2 Distribution between different lake areas
4.3.4 Small scale distribution - patchiness
4.3.5 Vertical distribution
4.3.5.1 Residence depth in the sediment
4.3.5.2 Larvae in the water column
4.4 Results
4.4.1 Large scale distribution
4.4.1.1 Depth gradient of the larval abundance
4.4.1.2 Distribution between different lake areas
4.4.2 Small scale distribution - patchiness
4.4.3 Vertical distribution
4.4.3.1 Residence depth in the sediment
4.4.3.2 Larvae in the water column
4.5 Discussion
4.5.1 Large scale distribution
4.5.1.1 Depth gradient of the larval abundance
4.5.1.2 Distribution between different lake areas
4.5.2 Small scale distribution - patchiness
4.5.3 Vertical distribution
4.5.3.1 Residence depth in the sediment
4.5.3.2 Larvae in the water column

5. INVESTIGATIONS ON THE PREFERENCE TEMPERATURE OF
C. ANTHRACINUS FROM THE MESOTROPHIC SAIDENBACH RESERVOIR
5.1 Introduction
5.2 Material and methods
5.2.1 Influence of temperature on the timing of pupation
5.2.2 Preference temperature
5.2.3 Locomotory activity of larvae
5.3 Results
5.3.1 Migratory activity of C. anthracinus in the field
5.3.2 Influence of temperature on the timing of pupation
5.3.3 Preference temperature
5.3.4 Locomotory activity of larvae
5.4 Discussion
5.4.1 Influence of temperature on the timing of pupation
5.4.2 Preference temperature
5.4.3 Agitation activity of larvae

6. OVERALL SUMMARY AND FUTURE PROSPECTS
7. REFERENCES
EIDESSTATTLICHE ERKLÄRUNG
DANKSAGUNG

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25667
Date30 June 2011
CreatorsHempel, Esther
ContributorsBenndorf, Jürgen, Rothaupt, Karl-Otto, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds