L'analyse numérique se développe en un outil puissant dans l'étude des équations aux dérivées partielles (EDPs), permettant d'illustrer des théorèmes existants et de trouver des conjectures. En utilisant des techniques sophistiquées, des questions apparaissant inaccessibles avant, comme des oscillations rapides ou un blow-up des solutions, peuvent être étudiées. Des oscillations rapides dans les solutions sont observées dans des EDPs dispersives sans dissipation ou les solutions des EDPs correspondantes sans dispersion ont des chocs. Pour résoudre numériquement ces oscillations, l'application de méthodes efficaces introduisant peu de dissipation numérique artificielle est impérative, en particulier pour l'étude d' EDPs en plusieurs dimensions. Comme les EDPs étudiées dans ce contexte sont typiquement raides, l'intégration efficace dans le temps représente le principal problème. Une analyse des intégrants exponentiels et symplectiques a permis de déterminer les méthodes les plus efficaces pour chaque EDP étudiée. L'apprentissage et l'utilisation de techniques de parallélisation de codes numériques permet de nos jours de grandes avancées, plus précisément dans ce travail d'étudier numériquement la stabilité des solutions et l'apparition de blow-up dans l'équation de Davey-Stewartson.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00692549 |
Date | 25 October 2011 |
Creators | Roidot, Kristelle |
Publisher | Université de Bourgogne |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds