Dans un premier temps, nous avons synthétisé et caractérisé une chondrite à enstatite reconstituée. En étudiant cet objet, nous avons pu identifier et comprendre le signal Raman des sulfures présents dans les météorites à enstatite. La réponse Raman de ces phases est obtenue via l'activation des modes infra-rouge suite à une modification de la symétrie dans le réseau cristallin. Dans un second temps, nous avons utilise cet analogue pour comprendre le processus de bio-alteration des chondrites à enstatite dans les conditions terrestres actuelles, donc en aérobiose. Afin de bien comprendre ce phénomène de bio altération sur ce matériau complexe, il a été indispensable d'étudier ce mécanisme sur chacune des phases présentes dans celui-ci. Ainsi l'analogue de chondrite à enstatite, l'enstatite, la troilite, l'alliage Fe-Si et aussi de l'olivine ont été altérés abiotiquement et bio altérés par les souches Acidithiobacillus ferrooxidans et Acidithiobacillus thiooxidans, ¨¤ pH ¡Ö 2 ¨¤ T = 20¡ãC. Cette étude a permis d'obtenir et d'interpréter à l'échelle de la microscopie électronique à balayage les principales phases et microstructures qui se développent lors de l'altération abiotique ou biologique d'une chondrite à enstatite. En parallèle, des mesures régulières de la chimie du milieu aqueux ont permis d'étudier la cinétique de lixiviation de ces expériences de bio-alteration et de la comparer à une modélisation thermodynamique et cinétique, que nous avons effectué avec le programme Jchess. Nos résultats montrent qu'en opposition avec ce qui a été observe sur les phases séparées, les cinétiques de dissolution sont très différentes lorsque les différentes phases sont associées dans l'analogue de chondrite à enstatite : la troilite se dissout bien plus lentement que dans les expériences sur phases séparées alors que l'enstatite se dissout plus vite. La dissolution plus lente de la troilite est attribuée à la présence de monosulfures très solubles dans le matériau de départ. Ces observations pourront être utilisées pour modéliser et interpréter l'évolution d'une chondrite à enstatite à la surface de la Terre et, au delà, de matériaux réduits associant métaux, sulfures et silicates. Les chondrites à enstatite constituent un substrat approprié pour les deux souches bactériennes étudiées qui, en présence de cet assemblage minéral, ont montré de l'activité biologique, en particulier la formation de biofilms, et ont accéléré les vitesses de dissolution / The aim of this study is to investigate the mineralogical and chemical processes which take place during the bioweathering of an enstatite chondrite by bacteria. Synthetic enstatite chondrites were made in laboratory in order to begin this complex study with simplified and well-defined materials. These analogs were shown to contain the major phases of enstatite chondrites: enstatite, Si-rich kamacite, troilite and unusual sulfides such as oldhamite or niningerite. First, the Raman study of this analog allowed to identify and understand the specific Raman signal of sulphides present in enstatite meteorites. The Raman signal of these phases is explained by infrared activation due to a symmetry modification in the crystal lattice. Then, in order to better understand the aqueous alteration of enstatite chondrites, each major phase and olivine were separately submitted to aqueous and aerobic alteration with or without Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans at pH ¡Ö 2 ¨¤ T = 20¡ãC. All experiments were characterized before and after alteration using scanning electron microscopy. Regular measurements og the chemistry of the aqueous medium were used to study the kinetics of leaching experiments of bio-alteration and compared to thermodynamic and kinetic modeling with JChess. Our results show that contrary to the observations on the separate phases, the dissolution kinetics are very different when the whole phases are associated in the enstatite chondrite analogue: troilite dissolves more slowly than in experiments on separate phases while enstatite dissolves faster. The slower dissolution of troilite is ascribed to the presence of oldhamite and niningerite in the starting material. These observations will be useful to understand and model the evolution of enstatite chondrites at the surface of the Earth and, beyond that, of reduced assemblages containing metals, sulphides and silicates. Enstatite chondrites are shown to be an appropriate substrate for the two bacterial strains which have shown biological activity, especially by the formation of biofilms and which have accelerated the dissolution kinetics
Identifer | oai:union.ndltd.org:theses.fr/2011PEST1064 |
Date | 30 November 2011 |
Creators | Avril, Caroline |
Contributors | Paris Est, Malavergne, Valérie |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds