We attempt to determine the structure of the automorphism group of a generic circulant graph. We first show that almost all circulant graphs have automorphism groups as small as possible. Dobson has conjectured that almost all of the remaining circulant (di)graphs (those whose automorphism groups are not as small as possible) are normal circulant (di)graphs. We show this conjecture is not true in general, but is true if we consider only those circulant (di)graphs whose orders are in a “large” subset of integers. We note that all non-normal circulant (di)graphs can be classified into two natural classes (generalized wreath products, and deleted wreath type), and show that neither of these classes contains almost every non-normal circulant digraph.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-4362 |
Date | 17 August 2013 |
Creators | Bhoumik, Soumya |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0018 seconds