Return to search

Comportement d'une discontinuit?? dans un g??omat??riau sous sollicitation chemo-m??canique : exp??rimentations et mod??lisations

R??sum?? : Ces travaux de th??se s'int??ressent ?? l'??tude du comportement d'une discontinuit?? dans un g??omat??riau sous sollicitations chemo-m??caniques ?? l'??chelle du laboratoire. Des essais de traction-compression cyclique ??tudient la refermeture d'une fissure. Ils indiquent que les d??formations in??lastiques seraient gouvern??es en partie par les frottements g??n??r??s lors du r??-embo??tement des l??vres de la discontinuit??, non correspondantes du fait des contraintes internes. Des joints rocheux alt??r??s chimiquement sous sollicitation tangentielle sont ??tudi??s au travers d'essais de cisaillement direct : le comportement des joints d??grad??s est profond??ment modifi?? du fait de la diminution des propri??t??s m??caniques du mat??riau de part et d'autre de la discontinuit?? et de l'accentuation de la non-correspondance des profils rugueux. Le comportement d'une discontinuit?? est mod??lis??e par le couplage d'un mod??le ??lasto-plastique endommageable continu avec une r??solution discr??te du probl??me de contact/frottement (code calcul aux ??l??ments finis Cast3M). Les r??sultats num??riques confirment les ph??nom??nes constat??s exp??rimentalement.//Abstract: To probate the technology of CO[indice inf??rieur 2] geological storage, the integrity of the site must be assure over time. This industruial problematic involves the study of the mechanical properties alteration of geomaterials in the presence of CO[indice inf??rieur 2]. The scenario at the origin of this thesis illustrates the possibility of a CO[indice inf??rieur 2] leakage on a fault located in the caprock. This geological problem is complicated by the many parameters to consider: in situ temperature and pressure, scale effect, heterogeneities of the geomaterial, geofluide composition, chemical reactions ... These works focus on the behavior of a discontinuity in a geomaterial solicited chemomechanically at the laboratory scale. They were realised in cotutelle between SIAME laboratory at the University of Pau and Pays de l'Adour (France) and the laboratory of rock mechanics and engineering geology from the University of Sherbrooke (Quebec, Canada). The first part of the experimental program was defined to characterize the reclosing of a crack under cyclic uniaxial stress. The second experimental campaign has studied the shear behavior of a rock joint chemically degraded. The data obtained were used to model the behavior of a discontinuity by the finite element method. The mechanical behavior of a crack under normal stress is assessed with cyclic tension-compression tests. Stress curve showed hysteresis during opening and closing cycles of a discontinuity in concrete, it indicated inelastic deformations The analysis of displacement field by image correlation indicated that theses deformations were partially governed by the friction generated during the closing of the discontinuity lips. Frictional phenomena are due to asperities mismatching induced by the internal stresses in the concrete. The shear behavior of a rock joint chemically damaged was studied through direct shear tests. Rough surfaces were immersed in acid solution during 6 hours at constant pH. Digitalization of these surfaces befor and after immesion, with a lase profilometer, indicates little modifications of the geometry induced by dissolution of material. Results of tests pointed out significant modifications for altered joints illustred by a of the peak shear strength and an increased of contractancy. They are induced by: 1) the mismatch enhancement of the rough profiles of the discontinuity and, 2) the degradation of the mechanical properties of the material on both sides of the discontinuity due to the chemical attack. Numerical contribution of the thesis lies in modeling the behavior of a discontinuity by the coupling of an continuous elastic-plastic damaged model with a discrete resolution of the contact/friction problem. The model is developed with the finite element code Cast3M. Geometries lips discontinuities are modeled directly from the roughness profiles from experimental scans. The numerical results correctly represent the friction phenomena observed experimentally. Finally, a model of the shear test altered joints is performed by coupling the mechanical model with chemical damage model.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QSHERU.3/110
Date January 2014
CreatorsNouailletas, Olivier
ContributorsRivard, Patrice, La Borderie, Christian, Ballivy, G??rard, Perlot Bascoul??s, C??line
PublisherUniversit?? de Sherbrooke
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageFrench
Detected LanguageEnglish
TypeTh??se
Rightshttp://creativecommons.org/licenses/by-nc-nd/2.5/ca/, ?? Olivier Nouailletas, Attribution - Pas d???Utilisation Commerciale - Pas de Modification 2.5 Canada

Page generated in 0.0026 seconds