Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux.
Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées.
De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules. / This thesis deals with the analytic classification of unfoldings of linear differential systems with an irregular singularity. It contains two papers related to this subject: the first paper presents results concerning the confluence of the hypergeometric equation and may be viewed as a particular case of the second one; the second paper contains the main theorems and results.
In both papers, we study the confluence of two regular singular points into an irregular one and we give consequences of the divergence of solutions at the irregular singular point for the unfolded system. For this study, a full neighborhood of the origin is covered (in a ramified way) in the space of the unfolding parameter $\epsilon$. Monodromy of a well chosen basis of solutions around the regular singular points is directly linked to the unfolded Stokes matrices. These matrices give a complete geometric interpretation to the well-known Stokes matrices: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $\epsilon=0$ and the presence of logarithmic terms in the solutions for resonant values of $\epsilon$. Monodromy of first integrals of related Riccati systems are also interpreted in terms of the elements of the unfolded Stokes matrices.
The second paper goes further into the subject, giving the complete system of analytic invariants for the unfoldings of nonresonant linear differential systems $x^2y'=A(x)y$ with an irregular singularity of Poincaré rank $1$ at the origin over a fixed neighborhood $\mathbb{D}_r$ in the space of the variable $x$. It consists of a formal part, given by polynomials, and an analytic part, given by an equivalence class of unfolded Stokes matrices. For each parameter value $\epsilon$ taken in a sector pointed at the origin of opening larger than $2\pi$, we cover the space of the variable, $\mathbb{D}_r$, with two sectors and, over each of them, we construct a well chosen basis of solutions of the unfolded differential system. This basis is used to define the unfolded Stokes matrices. Finally, we give a realization theorem for the invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/4430 |
Date | 04 1900 |
Creators | Lambert, Caroline |
Contributors | Rousseau, Christiane |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0065 seconds