• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Résurgence des systèmes différentiels linéaires et calcul des matrices de Stokes

Rémy, Pascal 19 September 2007 (has links) (PDF)
Le but de cette thèse est la construction d'une méthode de calcul effectif des multiplicateurs de Stokes avec évaluation de l'erreur. Cette méthode s'applique à tous les systèmes de niveau unique et au premier niveau des systèmes de niveaux multiples. Dans une partie théorique, nous commençons par établir la résurgence des solutions formelles en suivant la méthode d'Ecalle par perturbation régulière et séries majorantes. Nous déduisons de celle-ci une description précise des singularités dans le plan de Borel en déterminant les coefficients de résurgence et les multiplicateurs de Stokes. Dans la partie numérique, nous supposons que les systèmes sont à coefficients rationnels et nous choisissons de travailler dans le plan de Borel en calculant les coefficients de résurgence par prolongements analytiques successifs. En particulier, nous construisons des algorithmes permettant d'évaluer l'erreur. Nous illustrons également cette méthode de calcul par plusieurs exemples numériques.
2

Application de Riemann-Hilbert-Birkhoff / Riemann-Hilbert-Birkhoff map

Paolantoni, Thibault 20 December 2017 (has links)
L'application exponentielle duale est une façon d'encoder les matrices de Stokes d'une connexion sur un fibré trivial sur la sphère de Riemann avec deux pôles : un pôle double en 0 et un pôle simple en l'infini.On donne ici une formule pour l'application exponentielle duale comme une série formelle non commutative. D'autres généralisations de cette formule sont données. / The exponential dual map is a way to encode Stokes data of a connection on a trivial vector bundle on the Riemann sphere with two poles: one double pole at 0 and one simple pole at infinity.We give here a formula for the exponential dual map expressed as a non commutative serie. Others generalizations of this formula are given.
3

Caractère intrinsèque des matrices de Stokes

Gagnon, Jean-François 08 1900 (has links)
Il est connu qu’une équation différentielle linéaire, x^(k+1)Y' = A(x)Y, au voisinage d’un point singulier irrégulier non-résonant est uniquement déterminée (à isomorphisme analytique près) par : (1) sa forme normale formelle, (2) sa collection de matrices de Stokes. La définition des matrices de Stokes fait appel à un ordre sur les parties réelles des valeurs propres du système, ordre qui peut être perturbé par une rotation en x. Dans ce mémoire, nous avons établi le caractère intrinsèque de cette relation : nous avons donc établi comment la nouvelle collection de matrices de Stokes obtenue après une rotation en x qui change l’ordre des parties réelles des valeurs propres dépend de la collection initiale. Pour ce faire, nous donnons un chapitre de préliminaires généraux sur la forme normale des équations différentielles ordinaires puis un chapitre sur le phénomène de Stokes pour les équations différentielles linéaires. Le troisième chapitre contient nos résultats. / It is well known that a linear differential equation, x^(k+1)Y' = A(x)Y, near a non-resonant irregular singular point is uniquely determined (up to analytic isomorphism) by : (1) its formal normal form, (2) the collection of its Stokes matrices. By definition, the Stokes matrices depend on an order defined on the real parts of the eigenvalues of the system which can be perturbed by a rotation in the x coordinate. In this paper, we have established the intrinsic character of the dependency : we have described how the new Stokes collection is obtained from the first collection after a rotation in x which changes the order on the real parts of the eigenvalues. The first chapter contains preliminaries concerning the normal form of an ordinary differential equation and a chapter on the Stokes phenomenon for linear differential equations. The third chapter contains our results.
4

Classification analytique de systèmes différentiels linéaires déployant une singularité irrégulière de rang de Poincaré 1

Lambert, Caroline 04 1900 (has links)
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules. / This thesis deals with the analytic classification of unfoldings of linear differential systems with an irregular singularity. It contains two papers related to this subject: the first paper presents results concerning the confluence of the hypergeometric equation and may be viewed as a particular case of the second one; the second paper contains the main theorems and results. In both papers, we study the confluence of two regular singular points into an irregular one and we give consequences of the divergence of solutions at the irregular singular point for the unfolded system. For this study, a full neighborhood of the origin is covered (in a ramified way) in the space of the unfolding parameter $\epsilon$. Monodromy of a well chosen basis of solutions around the regular singular points is directly linked to the unfolded Stokes matrices. These matrices give a complete geometric interpretation to the well-known Stokes matrices: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $\epsilon=0$ and the presence of logarithmic terms in the solutions for resonant values of $\epsilon$. Monodromy of first integrals of related Riccati systems are also interpreted in terms of the elements of the unfolded Stokes matrices. The second paper goes further into the subject, giving the complete system of analytic invariants for the unfoldings of nonresonant linear differential systems $x^2y'=A(x)y$ with an irregular singularity of Poincaré rank $1$ at the origin over a fixed neighborhood $\mathbb{D}_r$ in the space of the variable $x$. It consists of a formal part, given by polynomials, and an analytic part, given by an equivalence class of unfolded Stokes matrices. For each parameter value $\epsilon$ taken in a sector pointed at the origin of opening larger than $2\pi$, we cover the space of the variable, $\mathbb{D}_r$, with two sectors and, over each of them, we construct a well chosen basis of solutions of the unfolded differential system. This basis is used to define the unfolded Stokes matrices. Finally, we give a realization theorem for the invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
5

Unfolded singularities of analytic differential equations

Klimes, Martin 06 1900 (has links)
La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre. / The thesis is composed of a chapter of preliminaries and two articles on the theme of unfolding of singularities of analytic differential equations in a complex domain. They are both related to the problem of local analytic classification of parametric families of linear systems: When two parametric families of linear systems are equivalent by means of an analytic change of coordinates in a neighborhood of the singularity? The article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity deals with the question of analytic equivalence of parametric families of systems of linear differential equations in dimension 2 unfolding a generic resonant singularity of Poincaré rank 1 whose leading matrix is a Jordan bloc. The problem is completely solved and the moduli space of analytic equivalence classes is described in terms of a set of formal invariants and a single analytic invariant obtained from the trace of the monodromy. Universal unfoldings are provided for all such singularities. The article Confluence of singularities of non-linear differential equations via Borel-Laplace transformations investigates bounded solutions of systems of differential equations describing a 1-dimensional center manifold of an unfolded saddle-node singularity in a family of complex vector fields. Generally, a system of analytic ODE at a double singular point possesses a unique formal solution in terms of a divergent power series. The classical Borel summation method associates to it true solutions that are asymptotic to the series on certain sectors in the complex plane. The article shows how to unfold the Borel and Laplace integral transformations of the summation procedure. A new kind of solutions of parameter dependent systems of ODE with two simple (regular) singular points unfolding a double (irregular) singularity are constructed, which are bounded on certain “spiraling” domains attached to both singular points, and which at the limit converge uniformly to a pair of the classical sectorial solutions. The method provides a unified treatment for all values of parameter.
6

Phénomènes de Stokes et approche galoisienne des problèmes de confluence

Dreyfus, Thomas 20 November 2013 (has links) (PDF)
Cette thèse porte sur la théorie de Galois différentielle. Elle est divisée en deux parties. La première concerne la théorie de Galois différentielle paramétrée, et la seconde, les équations aux q-différences. Dans le chapitre 2, nous exposons une généralisation de l'algorithme de Kovacic qui permet de calculer le groupe de Galois paramétré de certaines équations différentielles paramétrées d'ordre 2. Dans le chapitre 3, nous présentons une généralisation du théorème de densité de Ramis qui donne un ensemble de générateurs topologiques du groupe de Galois pour les équations différentielles linéaires paramétrées à coefficients dans un anneau convenable. Nous obtenons une contribution au problème inverse dans cette théorie de Galois, donnons un critère d'isomonodromie, et répondons partiellement à une question posée par Sibuya. Dans le chapitre 4, il est question de confluence et d'équations aux q-différences. Nous prouvons comment la transformée de Borel-Laplace d'une série formelle divergente solution d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par un q-analogue de la transformée de Borel-Laplace appliqué à une série formelle solution d'une famille d'équations aux q-différences linéaires qui discrétise l'équation différentielle. Nous faisons directement les calculs dans le cas des séries hypergéométriques basiques, et nous prouvons sous des hypothèses raisonnables, qu'une matrice fondamentale d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par une matrice fondamentale d'une famille d'équations aux q-différences linéaires correspondante.
7

Classification analytique de systèmes différentiels linéaires déployant une singularité irrégulière de rang de Poincaré 1

Lambert, Caroline 04 1900 (has links)
Cette thèse traite de la classification analytique du déploiement de systèmes différentiels linéaires ayant une singularité irrégulière. Elle est composée de deux articles sur le sujet: le premier présente des résultats obtenus lors de l'étude de la confluence de l'équation hypergéométrique et peut être considéré comme un cas particulier du second; le deuxième contient les théorèmes et résultats principaux. Dans les deux articles, nous considérons la confluence de deux points singuliers réguliers en un point singulier irrégulier et nous étudions les conséquences de la divergence des solutions au point singulier irrégulier sur le comportement des solutions du système déployé. Pour ce faire, nous recouvrons un voisinage de l'origine (de manière ramifiée) dans l'espace du paramètre de déploiement $\epsilon$. La monodromie d'une base de solutions bien choisie est directement reliée aux matrices de Stokes déployées. Ces dernières donnent une interprétation géométrique aux matrices de Stokes, incluant le lien (existant au moins pour les cas génériques) entre la divergence des solutions à $\epsilon=0$ et la présence de solutions logarithmiques autour des points singuliers réguliers lors de la résonance. La monodromie d'intégrales premières de systèmes de Riccati correspondants est aussi interprétée en fonction des éléments des matrices de Stokes déployées. De plus, dans le second article, nous donnons le système complet d'invariants analytiques pour le déploiement de systèmes différentiels linéaires $x^2y'=A(x)y$ ayant une singularité irrégulière de rang de Poincaré $1$ à l'origine au-dessus d'un voisinage fixé $\mathbb{D}_r$ dans la variable $x$. Ce système est constitué d'une partie formelle, donnée par des polynômes, et d'une partie analytique, donnée par une classe d'équivalence de matrices de Stokes déployées. Pour chaque valeur du paramètre $\epsilon$ dans un secteur pointé à l'origine d'ouverture plus grande que $2\pi$, nous recouvrons l'espace de la variable, $\mathbb{D}_r$, avec deux secteurs et, au-dessus de chacun, nous choisissons une base de solutions du système déployé. Cette base sert à définir les matrices de Stokes déployées. Finalement, nous prouvons un théorème de réalisation des invariants qui satisfont une condition nécessaire et suffisante, identifiant ainsi l'ensemble des modules. / This thesis deals with the analytic classification of unfoldings of linear differential systems with an irregular singularity. It contains two papers related to this subject: the first paper presents results concerning the confluence of the hypergeometric equation and may be viewed as a particular case of the second one; the second paper contains the main theorems and results. In both papers, we study the confluence of two regular singular points into an irregular one and we give consequences of the divergence of solutions at the irregular singular point for the unfolded system. For this study, a full neighborhood of the origin is covered (in a ramified way) in the space of the unfolding parameter $\epsilon$. Monodromy of a well chosen basis of solutions around the regular singular points is directly linked to the unfolded Stokes matrices. These matrices give a complete geometric interpretation to the well-known Stokes matrices: this includes the link (existing at least for the generic cases) between the divergence of the solutions at $\epsilon=0$ and the presence of logarithmic terms in the solutions for resonant values of $\epsilon$. Monodromy of first integrals of related Riccati systems are also interpreted in terms of the elements of the unfolded Stokes matrices. The second paper goes further into the subject, giving the complete system of analytic invariants for the unfoldings of nonresonant linear differential systems $x^2y'=A(x)y$ with an irregular singularity of Poincaré rank $1$ at the origin over a fixed neighborhood $\mathbb{D}_r$ in the space of the variable $x$. It consists of a formal part, given by polynomials, and an analytic part, given by an equivalence class of unfolded Stokes matrices. For each parameter value $\epsilon$ taken in a sector pointed at the origin of opening larger than $2\pi$, we cover the space of the variable, $\mathbb{D}_r$, with two sectors and, over each of them, we construct a well chosen basis of solutions of the unfolded differential system. This basis is used to define the unfolded Stokes matrices. Finally, we give a realization theorem for the invariants satisfying a necessary and sufficient condition, thus identifying the set of modules.
8

Classification et géométrie des équations aux q-différences : étude globale de q-Painlevé, classification non isoformelle et Stokes à pentes arbitraires / Classification and geometry of q-difference equations : global study of q-Painlevé, non-isoformal classification and stokes with arbitrary slopes

Eloy, Anton 28 September 2016 (has links)
Cette thèse s'intéresse à la classification géométrique, locale et globale, des équations aux q-différences. Dans un premier temps nous réalisons une étude globale de certains systèmes dérivés des équations de q-Painlevé et introduits par Murata, en proposant une correspondance de Riemann-Hilbert-Birkhoff entre de tels systèmes et leurs matrices de connexion. Dans un second temps nous nous intéressons à la classification locale, en construisant un fibré vectoriel équivariant sur l'espace des classes formelles à deux pentes dont la fibre au dessus d'une classe formelle est l'espace de ses classes analytiques isoformelles. Ceci fait, voyant que l'action du groupe des automorphismes du gradué s'impose naturellement dans l'étude de ce fibré, nous nous intéressons à l'espace des classes analytiques, soit des classes analytiques isoformelles modulo cette action, dont nous proposons dans un cas restreint une première approche de classification via l'utilisation de variétés toriques. Dans un troisième temps nous construisons, via des transformations de q-Borel et de q-Laplace, des q-Stokes, soit des solutions méromorphes de systèmes, dans le cadre des systèmes à deux pentes dont une non entière et une nulle. / This thesis falls within the context of global and local geometric classification of q-difference equations. In a first part we study the global behaviour of some systems derived from q-Painlevé equations and introduced by Murata. We do so by constructing a Riemann-Hilbert-Birkhoff correspondence between such systems and their connexion matrices. In a second part we work on local classification by providing a construction of an equivariant vector bundle over the space of all formal classes with two slopes, the fibre over a formal class being the space of its isoformal analytic classes. As the action of the group of automorphisms of the graded module arises naturally when we study this bundle, we take an interest in the study of the space of analytic classes, which is the space of isoformal analytic classes modulo this action. We propose a first approach of such a classification by using toric varieties. In a third part we construct q-Stokes, i.e. meromorphic solutions of systems, in the context of systems with one non-integral slope and one equal to zero, this by using q-Borel and q-Laplace transforms.

Page generated in 1.8721 seconds