Spelling suggestions: "subject:"algorithme dde kovacic"" "subject:"algorithme dde covacic""
1 |
Phénomènes de Stokes et approche galoisienne des problèmes de confluenceDreyfus, Thomas 20 November 2013 (has links) (PDF)
Cette thèse porte sur la théorie de Galois différentielle. Elle est divisée en deux parties. La première concerne la théorie de Galois différentielle paramétrée, et la seconde, les équations aux q-différences. Dans le chapitre 2, nous exposons une généralisation de l'algorithme de Kovacic qui permet de calculer le groupe de Galois paramétré de certaines équations différentielles paramétrées d'ordre 2. Dans le chapitre 3, nous présentons une généralisation du théorème de densité de Ramis qui donne un ensemble de générateurs topologiques du groupe de Galois pour les équations différentielles linéaires paramétrées à coefficients dans un anneau convenable. Nous obtenons une contribution au problème inverse dans cette théorie de Galois, donnons un critère d'isomonodromie, et répondons partiellement à une question posée par Sibuya. Dans le chapitre 4, il est question de confluence et d'équations aux q-différences. Nous prouvons comment la transformée de Borel-Laplace d'une série formelle divergente solution d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par un q-analogue de la transformée de Borel-Laplace appliqué à une série formelle solution d'une famille d'équations aux q-différences linéaires qui discrétise l'équation différentielle. Nous faisons directement les calculs dans le cas des séries hypergéométriques basiques, et nous prouvons sous des hypothèses raisonnables, qu'une matrice fondamentale d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par une matrice fondamentale d'une famille d'équations aux q-différences linéaires correspondante.
|
Page generated in 0.0478 seconds