• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Confluence of quantum K-theory to quantum cohomology for projective spaces / Confluence de la K-théorique quantique vers la cohomologie quantique pour les espaces projectifs

Roquefeuil, Alexis 20 September 2019 (has links)
En géométrie algébrique, les invariants de Gromov—Witten sont des invariants énumératifs qui comptent le nombre de courbes complexes dans une variété projective lisse qui vérifient des conditions d’incidence. En 2001, A. Givental et Y.P. Lee ont défini de nouveaux invariants, dits de Gromov—Witten K-théoriques, en remplaçant les définitions cohomologiques dans la construction des invariants de Gromov—Witten par leurs analogues K-théoriques. Une question essentielle est de comprendre comment sont reliées ces deux théories. En 2013, Iritani- Givental-Milanov-Tonita démontrent que les invariants K-théoriques peuvent être encodés dans une fonction qui vérifie des équations aux q-différences. En général, ces équations fonctionnelles vérifient une propriété appelée “confluence”, selon laquelle on peut dégénérer ces équations pour obtenir une équationdifférentielle. Dans cette thèse, on propose de comparer les deux théories de Gromov— Witten à l’aide de la confluence des équations aux q-différences. On montre que, dans le cas des espaces projectifs complexes, que ce principe s’adapte et que les invariants Kthéoriques peuvent être dégénérés pour obtenir leurs analogues cohomologiques. Plus précisément, on montre que la confluence de la petite fonction J de Givental K-théorique permet de retrouver son analogue cohomologique après une transformation par le caractère de Chern. / In algebraic geometry, Gromov— Witten invariants are enumerative invariants that count the number of complex curves in a smooth projective variety satisfying some incidence conditions. In 2001, A. Givental and Y.P. Lee defined new invariants, called Ktheoretical Gromov—Witten invariants. These invariants are obtained by replacing cohomological objects used in the definition of the usual Gromov—Witten invariants by their Ktheoretical analogues. Then, an essential question is to understand how these two theories are related. In 2013, Iritani-Givental- Milanov-Tonita show that K-theoretical Gromov—Witten invariants can be embedded in a function which satisfies a q-difference equation. In general, these functional equations verify a property called “confluence”, which guarantees that we can degenerate these equations to obtain a differential equation. In this thesis, we propose to compare our two Gromov—Witten theories through the confluence of q-difference equations. We show that, in the case of complex projective spaces, this property can be adapted to degenerate Ktheoretical invariants into their cohomological analogues. More precisely, we show that theconfluence of Givental’s small K-theoretical Jfunction produces its cohomological analogue after applying the Chern character.
2

Classification et géométrie des équations aux q-différences : étude globale de q-Painlevé, classification non isoformelle et Stokes à pentes arbitraires / Classification and geometry of q-difference equations : global study of q-Painlevé, non-isoformal classification and stokes with arbitrary slopes

Eloy, Anton 28 September 2016 (has links)
Cette thèse s'intéresse à la classification géométrique, locale et globale, des équations aux q-différences. Dans un premier temps nous réalisons une étude globale de certains systèmes dérivés des équations de q-Painlevé et introduits par Murata, en proposant une correspondance de Riemann-Hilbert-Birkhoff entre de tels systèmes et leurs matrices de connexion. Dans un second temps nous nous intéressons à la classification locale, en construisant un fibré vectoriel équivariant sur l'espace des classes formelles à deux pentes dont la fibre au dessus d'une classe formelle est l'espace de ses classes analytiques isoformelles. Ceci fait, voyant que l'action du groupe des automorphismes du gradué s'impose naturellement dans l'étude de ce fibré, nous nous intéressons à l'espace des classes analytiques, soit des classes analytiques isoformelles modulo cette action, dont nous proposons dans un cas restreint une première approche de classification via l'utilisation de variétés toriques. Dans un troisième temps nous construisons, via des transformations de q-Borel et de q-Laplace, des q-Stokes, soit des solutions méromorphes de systèmes, dans le cadre des systèmes à deux pentes dont une non entière et une nulle. / This thesis falls within the context of global and local geometric classification of q-difference equations. In a first part we study the global behaviour of some systems derived from q-Painlevé equations and introduced by Murata. We do so by constructing a Riemann-Hilbert-Birkhoff correspondence between such systems and their connexion matrices. In a second part we work on local classification by providing a construction of an equivariant vector bundle over the space of all formal classes with two slopes, the fibre over a formal class being the space of its isoformal analytic classes. As the action of the group of automorphisms of the graded module arises naturally when we study this bundle, we take an interest in the study of the space of analytic classes, which is the space of isoformal analytic classes modulo this action. We propose a first approach of such a classification by using toric varieties. In a third part we construct q-Stokes, i.e. meromorphic solutions of systems, in the context of systems with one non-integral slope and one equal to zero, this by using q-Borel and q-Laplace transforms.

Page generated in 0.1296 seconds