Return to search

Nombres de Betti d'idéaux binomiaux / Betti numbers of binomial ideals

Ha Minh Lam et M. Morales ont introduit une classe d'idéaux binomiaux qui est une extension binomiale d'idéaux monomiaux libres de carrés.Étant donné I un idéal monomial quadratique de k[x] libre de carrés et J une somme d'idéaux de scroll de k[z] qui satisfont certaines conditions, nous définissons l'extension binomiale de I comme B=I+J. Le sujet de cette thèse est d'étudier le nombre p plus grand tel que les sizygies de B son linéaires jusqu'au pas p-1. Sous certaines conditions d'ordre imposées sur les facettes du complexe de Stanley-Reisner de I nous obtiendrons un ordre > pour les variables de l'anneau de polynomes k[z]. Ensuite nous prouvons pour un calcul des bases de Gröbner que l'idéal initial in(B), sous l'ordre lexicographique induit par l'ordre de variables >, est quadratique libre de carrés. Nous montrerons que B est régulier si et seulement si I est 2-régulier. Dans le cas géneral, lorsque I n'est pas 2-régulier nous trouverons une borne pour l'entier q maximal qui satisfait que les premier q-1 sizygies de B son linéaires. En outre, en supossant que J est un idéal torique et en imposant des conditions supplémentaires, nous trouveron une borne supérieure pour l'entier q maximal qui satisfait que les premier q-1 sizygies de B son linéaires. En imposant des conditions supplémentaires, nous prouverons que les deux bornes sont égaux. / Ha Minh Lam et M. Morales introduced a family of binomial ideals that are binomial extensions of square free monomial ideals. Let I be a square free monomial ideal of k[x] and J a sum of scroll ideals in k[z] with some extra conditions, we define the binomial extension of $I$ as $B=I+Jsubset sis$. The aim of this thesis is to study the biggest number p such that the syzygies of B are linear until the step p-1. Due to some order conditions given to the facets of the Stanley-Reisner complex of I we get an order > for the variables of the polynomial ring k[z]. By a calculation of the Gröbner basis of the ideal $B$ we obtain that the initial ideal in(B) is a square free monomial ideal. We will prove that B is 2-regular iff I is 2-regular. In the general case, wheter I is not 2-regular we will find a lower bound for the the maximal integer q which satisfies that the first q-1 sizygies of B are linear. On the other hand, wheter J is toric and supposing other conditions, we will find a upper bound for the integer q which satisfies that the first q-1 syzygies of B are linear. By given more conditions we will prove that the twobounds are equal.

Identiferoai:union.ndltd.org:theses.fr/2012GRENM043
Date10 October 2012
CreatorsDe Alba Casillas, Hernan
ContributorsGrenoble, Morales, Marcel
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds