<p dir="ltr">Cancer is the second leading cause of death worldwide, and there is a continued need for effective treatments to combat the disease. A key challenge in cancer therapy persists in the form of therapeutic resistance. While kinase inhibitors (KIs) have shown promise in treating cancer patients with dysregulated protein kinases, treatment failures are common, highlighting the urgent need to address this issue. Despite the approval of 80 protein kinase inhibitors by the United States Food and Drug Administration (FDA), and numerous others in clinical trials, the chemical space explored for protein kinase inhibitors remains limited. Most FDA-approved kinase inhibitors share common core moieties, such as indazole, quinoline, pyrazole, and pyrimidine, indicating a lack of diversification in drug development in this area.</p><p dir="ltr">Efforts to expand the chemical space have led to the identification of a novel 3<i>H</i>-pyrazolo-[4,3-<i>f</i>]quinoline core by the Sintim group. This scaffold can be efficiently synthesized through the Doebner–Povarov multicomponent reaction using readily available ketones, heteroaromatic aldehydes, and 5-aminoindazole. This multicomponent chemistry affords small molecules which inhibit disease-associated protein kinases with sub-nanomolar IC<sub>50</sub> values. Additionally, the scaffold presents a unique opportunity to tune for selectivity via judicious substitution patterns, allowing us to target numerous disease-driving kinases, such as FLT3, haspin, and CLK, with the use of simple multi-component chemistry.</p><p dir="ltr">From this work emerged lead amide-containing compound HSK205, which potently inhibits FLT3 and haspin and shows impressive potencies against FLT3-driven acute myeloid leukemia cell lines, with GI<sub>50</sub> values between 2 and 20 nM. Western blot analyses indicate that HSK205 inhibits the phosphorylation of FLT3 and histone H3 (substrate of haspin) in Molm-14 AML cells. Further exploration led to the discovery of lead CLK inhibitors, such as HSK1132 and HSK3110, which inhibit the growth of multiple myeloma cell lines <i>in vitro</i> with GI<sub>50</sub> values as low as 17 nM. Additionally, these compounds are orally bioavailable and reduce the growth of multiple myeloma RPMI-8226 xenograft model in mice by 69%.</p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/25595832 |
Date | 15 April 2024 |
Creators | Allison Lea Kempen (18360270) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/SYNTHESIS_AND_EVALUATION_OF_POTENT_INHIBITORS_OF_DISEASE-DRIVING_KINASES_VIA_ONE-FLASK_DOEBNER-POVAROV_REACTION/25595832 |
Page generated in 0.0022 seconds