Return to search

Clones over Finite Sets and Minor Conditions

Achieving a classification of all clones of operations over a finite set is one of the goals at the heart of universal algebra. In 1921 Post provided a full description of the lattice of all clones over a two-element set. However, over the following years, it has been shown that a similar classification seems arduously reachable even if we only focus on clones over three-element sets: in 1959 Janov and Mučnik proved that there exists a continuum of clones over a k-element set for every k > 2. Subsequent research in universal algebra therefore focused on understanding particular aspects of clone lattices over finite domains. Remarkable results in this direction are the description of maximal and minimal clones. One might still hope to classify all operation clones on finite domains up to some equivalence relation so that equivalent clones share many of the properties that are of interest in universal algebra.
In a recent turn of events, a weakening of the notion of clone homomorphism was introduced: a minor-preserving map from a clone C to D is a map which preserves arities and composition with projections. The minor-equivalence relation on clones over finite sets gained importance both in universal algebra and in computer science: minor-equivalent clones satisfy the same set identities of the form f(x_1,...,x_n) = g(y_1,...,y_m), also known as minor-identities. Moreover, it was proved that the complexity of the CSP of a finite structure A only depends on the set of minor-identities satisfied by the polymorphism clone of A. Throughout this dissertation we focus on the poset that arises by considering clones over a three-element set with the following order: we write C ≤_{m} D if there exist a minor-preserving map from C to D. It has been proved that ≤_{m} is a preorder; we call the poset arising from ≤_{m} the pp-constructability poset.
We initiate a systematic study of the pp-constructability poset. To this end, we distinguish two cases that are qualitatively distinct: when considering clones over a finite set A, one can either set a boundary on the cardinality of A, or not. We denote by P_n the pp-constructability poset restricted to clones over a set A such that |A|=n and by P_{fin} we denote the whole pp-constructability poset, i.e., we only require A to be finite. First, we prove that P_{fin} is a semilattice and that it has no atoms. Moreover, we provide a complete description of P_2 and describe a significant part of P_3: we prove that P_3 has exactly three submaximal elements and present a full description of the ideal generated by one of these submaximal elements. As a byproduct, we prove that there are only countably many clones of self-dual operations over {0,1,2} up to minor-equivalence.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:88674
Date15 December 2023
CreatorsVucaj, Albert
ContributorsBodirsky, Manuel, Szendrei, Ágnes, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds