Solar-type binaries with short orbital periods (P-close equivalent to 1-10. days; a less than or similar to 0.1. au) cannot form directly via fragmentation of molecular clouds or protostellar disks, yet their component masses are highly correlated, suggesting interaction during the pre-main-sequence (pre-MS) phase. Moreover, the close binary fraction of pre-MS stars is consistent with that of their MS counterparts in the field (F-close = 2.1%). Thus, we can infer that some migration mechanism operates during the early pre-MS phase (tau less than or similar to 5 Myr) that reshapes the primordial separation distribution. We test the feasibility of this hypothesis by carrying out a population synthesis calculation which accounts for two formation channels: Kozai-Lidov (KL) oscillations and dynamical instability in triple systems. Our models incorporate (1) more realistic initial conditions compared to previous studies, (2) octupole-level effects in the secular evolution, (3) tidal energy dissipation via weak-friction equilibrium tides at small eccentricities and via non-radial dynamical oscillations at large eccentricities, and (4) the larger tidal radius of a pre-MS primary. Given a 15% triple-star fraction, we simulate a close binary fraction from KL oscillations alone of F-close approximate to 0.4% after tau = 5. Myr, which increases to F-close 0.8% by tau = 5. Gyr. Dynamical ejections and disruptions of unstable coplanar triples in the disk produce solitary binaries with slightly longer periods P approximate to 10-100. days. The remaining approximate to 60% of close binaries with outer tertiaries, particularly those in compact coplanar configurations with log P-out (days) approximate to 2-5 (a(out) < 50 au), can be explained only with substantial extra energy dissipation due to interactions with primordial gas.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/627100 |
Date | 09 February 2018 |
Creators | Moe, Maxwell, Kratter, Kaitlin M. |
Contributors | Univ Arizona, Steward Observ |
Publisher | IOP PUBLISHING LTD |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | Article |
Rights | © 2018. The American Astronomical Society. All rights reserved. |
Relation | http://stacks.iop.org/0004-637X/854/i=1/a=44?key=crossref.109f7e85bf9ab3998e19ae2b54c7b236 |
Page generated in 0.0019 seconds