• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • Tagged with
  • 31
  • 31
  • 31
  • 31
  • 15
  • 14
  • 14
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

STAR FORMATION IN W3—AFGL 333: YOUNG STELLAR CONTENT, PROPERTIES, AND ROLES OF EXTERNAL FEEDBACK

Jose, Jessy, Kim, Jinyoung S., Herczeg, Gregory J., Samal, Manash R., Bieging, John H., Meyer, Michael R., Sherry, William H. 04 May 2016 (has links)
One of the key questions in the field of star formation is the role of stellar feedback on the subsequent star formation process. The W3 giant molecular cloud complex at the western border of the W4 super bubble is thought to be influenced by the massive stars in W4. This paper presents a study of the star formation activity within AFGL. 333, a similar to 104 M-circle dot cloud within W3, using deep JHK(s) photometry obtained from the NOAO Extremely Wide Field Infrared Imager combined with Spitzer IRAC and MIPS photometry. Based on the infrared excess, we identify 812 candidate young stellar objects (YSOs) in the complex, of which 99 are Class I and 713 are Class II sources. The stellar density analysis of YSOs reveals three major stellar aggregates within AFGL. 333, namely AFGL. 333 Main, AFGL. 333 NW1 and AFGL. 333 NW2. The disk fraction within AFGL. 333 is estimated to be similar to 50%-60%. We use the extinction map made from the H - K-s colors of the background stars and CO data to understand the cloud structure and to estimate the cloud mass. From the stellar and cloud mass associated with AFGL. 333, we infer that the region is currently forming stars with an efficiency of similar to 4.5% and at a rate of similar to 2-3M(circle dot) Myr(-1) pc(-2). In general, the star formation activity within AFGL. 333 is comparable to that of nearby low mass star-forming regions. We do not find any strong evidence to suggest that the stellar feedback from the massive stars of nearby W4 super bubble has affected the global star formation properties of the AFGL. 333 region.
2

The abundance and thermal history of water ice in the disk surrounding HD 142527 from the DIGIT Herschel Key Program

Min, M., Bouwman, J., Dominik, C., Waters, L. B. F. M., Pontoppidan, K. M., Hony, S., Mulders, G. D., Henning, Th., van Dishoeck, E. F., Woitke, P., Evans II, Neal J., Team, The DIGIT 29 August 2016 (has links)
Context. The presence or absence of ice in protoplanetary disks is of great importance to the formation of planets. By enhancing solid surface density and increasing sticking efficiency, ice catalyzes the rapid formation of planetesimals and decreases the timescale of giant planet core accretion. Aims. In this paper, we analyze the composition of the outer disk around the Herbig star HD 142527. We focus on the composition of water ice, but also analyze the abundances of previously proposed minerals. Methods. We present new Herschel far-infrared spectra and a re-reduction of archival data from the Infrared Space Observatory (ISO). We modeled the disk using full 3D radiative transfer to obtain the disk structure. Also, we used an optically thin analysis of the outer disk spectrum to obtain firm constraints on the composition of the dust component. Results. The water ice in the disk around HD 142527 contains a large reservoir of crystalline water ice. We determine the local abundance of water ice in the outer disk (i.e., beyond 130AU). The re-reduced ISO spectrum differs significantly from that previously published, but matches the new Herschel spectrum at their common wavelength range. In particular, we do not detect any significant contribution from carbonates or hydrous silicates, in contrast to earlier claims. Conclusions. The amount of water ice detected in the outer disk requires similar to 80% of oxygen atoms. This is comparable to the water ice abundance in the outer solar system, comets, and dense interstellar clouds. The water ice is highly crystalline while the temperatures where we detect it are too low to crystallize the water on relevant timescales. We discuss the implications of this finding.
3

TRACING SLOW WINDS FROM T TAURI STARS VIA LOW-VELOCITY FORBIDDEN LINE EMISSION

Simon, M. N., Pascucci, I., Edwards, S., Feng, W., Gorti, U., Hollenbach, D., Rigliaco, E., Keane, J. T. 04 November 2016 (has links)
Using Keck/HIRES spectra (Delta v similar to 7 km s(-1)) we analyze forbidden lines of [O I] 6300 angstrom, [O I] 5577 angstrom. and [S II] 6731 angstrom. from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high-velocity component (HVC) associated with microjets, we study the properties of the low-velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (magnetohydrodynamic) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 stars with detected [O. I] but only in two out of eight with detected [S. II], so our analysis is largely based on the properties of the [O. I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The full width at half maximum of both the BC and NC correlates with disk inclination, consistent with Keplerian broadening from radii of 0.05 to 0.5 au and 0.5 to 5 au, respectively. The velocity centroids of the BC suggest formation in an MHD disk wind, with the largest blueshifts found in sources with closer to face-on orientations. The velocity centroids of the NC, however, show no dependence on disk inclination. The origin of this component is less clear and the evidence for photoevaporation is not conclusive.
4

A CANDIDATE PLANETARY-MASS OBJECT WITH A PHOTOEVAPORATING DISK IN ORION

Fang, Min, Kim, Jinyoung Serena, Pascucci, Ilaria, Apai, Dániel, Manara, Carlo Felice 12 December 2016 (has links)
In this work, we report the discovery of a candidate planetary-mass object with a photoevaporating protoplanetary disk, Proplyd. 133-353, which is near the massive star theta(1) Ori C at the center of the Orion Nebula Cluster (ONC). The object was known to have extended emission pointing away from theta(1) Ori. C, indicating ongoing external photoevaporation. Our near-infrared spectroscopic data and the location on the H-R diagram suggest that the central source of Proplyd. 133-353 is substellar (similar to M9.5) and has a mass probably less than 13 Jupiter mass and an age younger than 0.5 Myr. Proplyd. 133-353 shows a similar ratio of X-ray luminosity to stellar luminosity to other young stars in the ONC with a similar stellar luminosity and has a similar proper motion to the mean one of confirmed ONC members. We propose that Proplyd. 133-353 formed in a very low-mass dusty cloud or an evaporating gas globule near theta(1) Ori C as a second generation of star formation, which can explain both its young age and the presence of its disk.
5

Protoplanetary Disks in ρ Ophiuchus as Seen from ALMA

Cox, Erin G., Harris, Robert J., Looney, Leslie W., Chiang, Hsin-Fang, Chandler, Claire, Kratter, Kaitlin, Li, Zhi-Yun, Perez, Laura, Tobin, John J. 15 December 2017 (has links)
We present a high angular resolution (similar to 0 ''.2), high-sensitivity (sigma similar to 0.2 mJy) survey of the 870 mu m continuum emission from the circumstellar material around 49 pre-main-sequence stars in the rho Ophiuchus molecular cloud. Because most millimeter instruments have resided in the northern hemisphere, this represents the largest high-resolution, millimeter-wave survey of the circumstellar disk content of this cloud. Our survey of 49 systems comprises 63 stars; we detect disks associated with 29 single sources, 11 binaries, 3 triple systems, and 4 transition disks. We present flux and radius distributions for these systems; in particular, this is the first presentation of a reasonably complete probability distribution of disk radii at millimeter wavelengths. We also compare the flux distribution of these protoplanetary disks with that of the disk population of the Taurus-Auriga molecular cloud. We find that disks in binaries are both significantly smaller and have much less flux than their counterparts around isolated stars. We compute truncation calculations on our binary sources and find that these disks are too small to have been affected by tidal truncation and posit some explanations for this. Lastly, our survey found three candidate gapped disks, one of which is a newly identified transition disk with no signature of a dip in infrared excess in extant observations.
6

An ALMA Survey of CO Isotopologue Emission from Protoplanetary Disks in Chamaeleon I

Long, Feng, Herczeg, Gregory J., Pascucci, Ilaria, Drabek-Maunder, Emily, Mohanty, Subhanjoy, Testi, Leonardo, Apai, Daniel, Hendler, Nathan, Henning, Thomas, Manara, Carlo F., Mulders, Gijs D. 26 July 2017 (has links)
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey (CO)-C-13 and (CO)-O-18 J = 3-2 line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from 0.03 to 2 M-circle dot in the nearby Chamaeleon I star-forming region. We detect (CO)-C-13 emission from 17 sources and (CO)-O-18 from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical interstellar medium CO-to-H-2 ratio of 10(-4), the resulting gas masses are implausibly low, with an average gas mass of similar to 0.05M(Jup) as inferred from the average flux of stacked (CO)-C-13 lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.
7

THE DEPLETION OF WATER DURING DISPERSAL OF PLANET-FORMING DISK REGIONS

Banzatti, A., Pontoppidan, K. M., Salyk, C., Herczeg, G. J., van Dishoeck, E. F., Blake, G. A. 10 January 2017 (has links)
We present a new velocity-resolved survey of 2.9 mu m spectra of hot H2O and OH gas emission from protoplanetary disks, obtained with the Cryogenic Infrared Echelle Spectrometer at the VLT (R similar to 96,000). With the addition of archival Spitzer-IRS spectra, this is the most comprehensive spectral data set of water vapor emission from disks ever assembled. We provide line fluxes at 2.9-33 mu m that probe from the dust sublimation radius at similar to 0.05 au out to the region of the water snow line. With a combined data set for 55 disks, we find a new correlation between H2O line fluxes and the radius of CO gas emission, as measured in velocity-resolved 4.7 mu m spectra (R-co), which probes molecular gaps in inner disks. We find that H2O emission disappears from 2.9 mu m (hotter water) to 33 mu m (colder water) as R-co increases and expands out to the snow line radius. These results suggest that the infrared water spectrum is a tracer of inside-out water depletion within the snow line. It also helps clarify an unsolved discrepancy between water observations and models by finding that disks around stars of M-star > 1.5M(circle dot) generally have inner gaps with depleted molecular gas content. We measure radial trends in H2O, OH, and CO line fluxes that can be used as benchmarks for models to study the chemical composition and evolution of planet-forming disk regions at 0.05-20 au. We propose that JWST spectroscopy of molecular-gas may be used as a probe of inner disk gas depletion, complementary to the larger gaps and holes detected by direct imaging and by ALMA.
8

NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

Fang, Min, Kim, Jinyoung Serena, Pascucci, Ilaria, Apai, Dániel, Zhang, Lan, Sicilia-Aguilar, Aurora, Alonso-Martínez, Miguel, Eiroa, Carlos, Wang, Hongchi 30 March 2017 (has links)
We perform a spectroscopic survey of the foreground population in Orion. A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of. less than 0.018-0.030 M-circle dot, which harbors a flaring disk. Using the Ha emission line, we characterize the accretion activity of the sources with disks, and confirm that the. fraction of accreting TDs is lower than that of optically thick disks (46% +/- 7% versus 73% +/- 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of. around 1-2 Myr, which is similar to that of other young stars in Orion. A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion. A.
9

EVOLUTION OF MASS OUTFLOW IN PROTOSTARS

Watson, Dan M., Calvet, Nuria P., Fischer, William J., Forrest, W. J., Manoj, P., Megeath, S. Thomas, Melnick, Gary J., Najita, Joan, Neufeld, David A., Sheehan, Patrick D., Stutz, Amelia M., Tobin, John J. 29 August 2016 (has links)
We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II], and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass. outflow rates, (M) over dot(w). Thereby we observe a strong correlation of (M) over dot(w) with bolometric luminosity, and with the inferred mass accretion rates of the central objects, (M) over dot(a), which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass. flow rates, the different classes of young stellar objects lie in the sequence Class 0-Class I/flat-spectrum-Class II, indicating that the trend is an evolutionary sequence in which (M) over dot(a) and (M) over dot(w) decrease together with increasing age, while maintaining rough proportionality. The survey results include two that. are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b = (M) over dot(w)/(M) over dot(a), and limits on the distribution of outflow speeds. Neither rules out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (31%) of the sample have a. branching ratio sufficiently small that only disk winds, launched on scales as large as several au, have been demonstrated to account for them.
10

A CONSTRAINT ON THE FORMATION TIMESCALE OF THE YOUNG OPEN CLUSTER NGC 2264: LITHIUM ABUNDANCE OF PRE-MAIN SEQUENCE STARS

Lim, Beomdu, Sung, Hwankyung, Kim, Jinyoung S., Bessell, Michael S., Hwang, Narae, Park, Byeong-Gon 02 November 2016 (has links)
The timescale of cluster formation is an essential parameter in order to understand the formation process of star clusters. Pre-main sequence (PMS) stars in nearby young open clusters reveal a large spread in brightness. If the spread were considered to be a result of a real spread in age, the corresponding cluster formation timescale would be about 5-20 Myr. Hence it could be interpreted that star formation in an open cluster is prolonged for up to a few tens of Myr. However, difficulties in reddening correction, observational errors, and systematic uncertainties introduced by imperfect evolutionary models for PMS stars can result in an artificial age spread. Alternatively, we can utilize Li abundance as a relative age indicator of PMS star to determine the cluster formation timescale. The optical spectra of 134 PMS stars in NGC 2264 have been obtained with MMT/Hectochelle. The equivalent widths have been measured for 86 PMS stars with a detectable Li line (3500 < T-eff [K] <= 6500). Li abundance under the condition of local thermodynamic equilibrium (LTE) was derived using the conventional curve of growth method. After correction for non-LTE effects, we find that the initial Li abundance of NGC 2264 is A(Li)= 3.2 +/- 0.2. From the distribution of the Li abundances, the underlying age spread of the visible PMS stars is estimated to be about 3-4 Myr and this, together with the presence of embedded populations in NGC 2264, suggests that the cluster formed on a timescale shorter than 5 Myr.

Page generated in 0.0612 seconds