Return to search

Distribution of Milk Clotting Enzymes Between Curd and Whey and Their Survival During Cheddar Cheese Manufacture

A linear diffusion test in sedimentation tubes filled with caseinagar gel successfully measured milk clotting enzymes at concentrations of 10-4 to 1 X 10-l rennin units/ml with 95% accuracy. Diffusion rates were unaffected by diluting enzyme samples with whey, 3% NaCl, and water, The distribution of rennet, porcine pepsin, mucor pusillus var Lindt (MP) protease, and rennet-pepsin mixtures between curd and whey was determined on milk coagulated at pH 5.2, 6.0, 6.4, and 6.6. The procedure accounted for 100 + 7% of the added enzymes. The distribution of rennet was pH dependent with 31% and 72% in curd and whey respectively at pH 6.6, and 864 and 174 respectively at pH 5.2. The distribution of MP protease was independent of pH with approximately 154 and 85% in the curd and whey at all pH values. Pepsin behaved similar to rennet but was unstable above pH 6.0. During Cheddar cheese making, 7% and 58% of the original rennet, 6% and 93% of the original MP protease, and 5% and 17% of the original rennet-pepsin mix was active in the curd and whey respectively at dipping. After overnight pressing, 6% of the rennet, 3% of MP protease, and 4% of the rennet-pepsin mix remained active in the cheese. At dipping only 9% of the original pepsin was detected in the whey. Pepsin was unstable at pH values used to release the enzyme from the curd and could not be quantitated.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-6181
Date01 May 1974
CreatorsHolmes, David G.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0023 seconds