Return to search

Approaches for the optimisation of double sampling for stratification in repeated forest inventories

Die zweiphasige Stichprobe zur Stratifizierung ist ein effizientes Inventurverfahren, das seine Praxistauglichkeit in verschiedenen Waldinventuren unter Beweis stellen konnte. Dennoch sind weitere Effizienzsteigerungen wünschenswert. In der vorliegenden Arbeit werden verschiedene Ansätze die Effektivität dieses Verfahrens zu steigern separat vorgestellt, in Fallstudien mit Daten der Niedersächsischen Betriebsinventur getestet und diskutiert.

Der erste Ansatz (Kapitel 2) beschäftigt sich mit der Anwendung der zweiphasigen Stichprobe zur Stratifizierung in Wiederholungsinventuren. In einem Zusammengesetzten Schätzer werden Daten eines aktuellen mit Simulationsergebnissen des vorhergehenden Inventurdurchgangs kombiniert. Dabei kann der Stichprobenumfang der aktuellen Inventur verringert werden, während die Daten aller Inventurpunkte des vorherigen Durchgangs für Simulationen genutzt werden. Zwar kann ein solcher Schätzer konstruiert werden, jedoch lässt die Fallstudie darauf schließen, dass keine, oder zumindest keine ausreichende, Effizienzsteigerung erzielt werden kann. Erklärt werden kann dies durch die großen Unterschiede zwischen den aktuellen Inventurergebnissen aus den reduzierten Inventuren und den prognostizierten Volumina aus den Simulationen. Eine Erhöhung der Effizienz dieses Verfahrens könnte nur durch Weiterentwicklungen der Waldwachstumsmodelle möglich werden.

In Wiederholungsinventuren kann jedoch eine höhere Effizienzsteigerung mit einem dreiphasigen Verfahren erreicht werden, das die zweiphasige Stichprobe mit der zwei\-phasigen Regressionsstichprobe kombiniert (Kapitel 3). Mittelwert- und Varianzschätzer, die auf dem sogenannten infinite population approach in der ersten Phase beruhen, werden präsentiert. Genutzt werden dabei die Korrelationen zwischen den aktuellen Inventurergebnissen und den Wachstumssimulationen auf der Basis des vorherigen Inventurdurchgangs. Statt der Simulationsergebnisse können auch einfach die Ergebnisse des vorherigen Inventurdurchgangs zur Berechnung der Korrelationen genutzt werden. Allerdings führt die Nutzung der Simulationsergebnisse als Regressor in den meisten Fällen zu besseren Ergebnissen. Bei verringertem Stichprobenumfang der Folgeinventur und damit einhergehendem Präzisionsverlust, ist die Effizienz des dreiphasigen Verfahrens höher als die des klassischen zweiphasigen Verfahrens. Die Nutzung der Vorinventur in Form eines stratenweisen Regressionsschätzers hat sich damit als erfolgreich und gegenüber dem zusammengesetzten Schätzer als deutlich überlegen gezeigt.

Als weiterer Ansatz wird die Erweiterung der zweisphasigen Stichprobe zur Stratifizierung um eine geclusterte Unterstichprobe zu einem dreiphasigen Design vorgestellt (Kapitel 4). Sowohl für den Ratio-to-Size- als auch für den unverzerrten Ansatz werden entsprechende Mittelwert- und Varianzschätzer präsentiert. Verglichen mit dem zweiphasigen Verfahren, führt dieses dreiphasige Design in der Fallstudie zu keiner Effizienzsteigerung. Gründe hierfür können in der vergleichsweise kleinen Größe der Forstämter und der hohen Stichprobendichte der Niedersächsischen Betriebsinventur gesehen werden. Sinnvolle Anwendungen dieses Verfahrens sind aber möglicherweise unter anderen Erschließungsbedingungen in Großgebieten denkbar.

In einer weiteren Fallstudie wird versucht existierende Probepunkte in Clustern von homogener Größe zusammenzufassen (Kapitel 5). Eine solche Zusammenfassung soll der Optimierung der Wegzeiten bei der Aufnahme von Inventurpunkten dienen. Dazu werden sieben verschiedene Methoden getestet und deren Ergebnisse miteinander verglichen. Durch einen Vergleich mit optimierten Richtwert-Lösungen wird zudem die Qualität dieser Lösungen evaluiert. Es zeigt sich, dass drei Algorithmen des Vehicle Routing Problems gut dazu geeignet sind, Cluster von homogener Größe zu erstellen. Nicht empfohlen werden kann dagegen die Verwendung von drei anderen Cluster-Algorithmen, sowie die Nutzung von Bewirtschaftungseinheiten als Cluster, da diese Methoden zu Clustern von sehr heterogener Größe führen.

Identiferoai:union.ndltd.org:uni-goettingen.de/oai:ediss.uni-goettingen.de:11858/00-1735-0000-001E-F78E-8
Date26 March 2013
Creatorsvon Lüpke, Nikolas
ContributorsSaborowski, Joachim Prof. Dr.
Source SetsGeorg-August-Universität Göttingen
LanguageEnglish
Detected LanguageGerman
TypedoctoralThesis

Page generated in 0.0031 seconds