Return to search

FIRST-PRINCIPLES STUDIES OF FERROELECTRIC PROPERTIES IN ORGANIC CRYSTAL AND PEROVSKITE SUPERLATTICES

This thesis discusses structural and ferroelectric properties of two well-known classes of materials, perovskite oxides and Hydrogen bonded ferroelectrics, using first-principles calculations. Certain aspects of first principles calculations are central to the problems presented in this thesis. Such as the ability to calculate polarization based on the modern theory of polarization and calculation of ferroelectric property under finite electric displacement field. Therefore, these fundamental theoretical approaches are discussed following an opening section on the basic methodology of density-functional theory. In addition to the discussion on theoretical methods, a brief review of different phenomena and techniques crucial to alter/enhance ferroelectric properties at the interfaces of perovskite materials has been presented along with examples. The first problem presented in this thesis proposes and validates an alternative quantitative measure of ferroelectric(FE) and antiferrodistortive(AFD) instabilities by means of calculating inverse capacitance and layer inverse capacitance of layered perovskites. The presented methodological approach is applied to BaTiO$_{3}$/CaTiO$_{3}$ and PbTiO$_{3}$/SrTiO$_{3}$ superlattices and it precisely estimates FE and AFD instabilities. Here we also present an approach to accurately predict the ferroelectric instabilities in large period superlattices from the statistical coefficients obtained from short period superlattices. In the second problem, we study ferroelectricity in an organic crystal(croconic acid) for which ferroelectric polarization is close to that of bulk BaTiO$_{3}$. We employ new meta-GGA functional named SCAN and revisit all structural and ferroelectric properties. Calculated X-ray absorption spectra(XAS) qualitatively and quantitatively agrees well with experimental O K-edge spectra. By discussing the origin of each XAS peak and their characteristic we demonstrate with a systematic approach the connection between ferroelectricity and XAS in croconic acid. Best to our knowledge such relation has not been realized in past. This study could prove XAS as a new way to measure ferroelectric instability in hydrogen-bonded organic ferroelectrics. / Physics

Identiferoai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/1090
Date January 2018
CreatorsDhuvad, Pratikkumar
ContributorsWu, Xifan, Ruzsinszky, Adrienn, Yan, Qimin, Carnevale, Vincenzo
PublisherTemple University. Libraries
Source SetsTemple University
LanguageEnglish
Detected LanguageEnglish
TypeThesis/Dissertation, Text
Format137 pages
RightsIN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/
Relationhttp://dx.doi.org/10.34944/dspace/1072, Theses and Dissertations

Page generated in 0.0022 seconds