Com o surgimento da tecnologia da informação, o processo de análise e interpretação de dados deixou de ser executado exclusivamente por seres humanos, passando a contar com auxílio computacional para a descoberta de conhecimento em grandes bancos de dados. Este auxílio exige uma organização e ordenação das atividades, antes manualmente exercidas, em um processo composto de três grandes etapas. A primeira etapa deste processo conta com uma tarefa de redução da dimensionalidade, que tem como objetivo a eliminação de atributos que não contribuem para a análise dos dados, resultando portanto, na seleção de um subconjunto dos atributos originais. A seleção de um subconjunto de atributos pode ser encarada como um problema de busca, já que há inúmeras possibilidades de combinação dos atributos originais em subconjuntos. Dessa forma, uma das estratégias de busca que pode ser adotada consiste na busca randômica, executada por um algoritmo genético ou pelas suas variações. Este trabalho propõe a aplicação de duas variações do algoritmo genético, Algoritmo Genético Construtivo e Algoritmo Genético Enviesado com Chave Aleatória, no problema de seleção de atributos em agrupamento de dados, já que estas duas variações ainda não foram aplicadas em tal problema. A fim de verificar o desempenho destas duas variações, comparou-se ambas com a abordagem tradicional do algoritmo genético. Efetuou-se também a comparação entre as duas variações. Para isto, foi utilizada três bases de dados retiradas do repositório UCI de aprendizado de máquinas. Os resultados obtidos mostraram que os desempenhos, em termos de qualidade da solução, dos algoritmos: genético construtivo e genético enviesado com chave aleatório foram melhores, de maneira geral, do que o desempenho da abordagem tradicional. Constatou-se também diferença significativa em termos de eficiência entre as duas variações e a abordagem tradicional. / With the advent of information technology, the process of analysis and interpretation of data left to be run exclusively by humans, going to rely on computational support for knowledge discovery in large databases. This aid requires an organization and sequencing of activities before manually performed in a compound of three major step process. The first step of this process has a reduced dimensionality task, which aims to eliminate attributes that do not contribute to the data analysis, resulting therefore, in selecting a subset of the original attributes. Selecting a subset of attributes can be viewed as a search problem, since there are numerous possible combinations of unique attributes into subsets. Thus, one search strategies that can be adopted is to randomly search, performed by a genetic algorithm or its variants. This paper proposes the application of two variations of the genetic algorithm, Constructive Genetic Algorithm and Biased Random Key Genetic Algorithm in the feature selection problem in data grouping, as these two variations have not been applied in such a problem. In order to verify the performance of the two variations, we compare them with the traditional algorithm, genetic algorithm. It was also executed the comparison between the two variations. For this, we used three databases removed from the UCI repository of machine learning. The results showed that the performance, in term of quality solution, of algorithms: genetic constructive and genetic biased with random key are better than the performance of the traditional approach. It was also observed a significant difference in efficiency between of the two variations and the traditional approach.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-05102016-134559 |
Date | 03 August 2016 |
Creators | Nádia Junqueira Martarelli |
Contributors | Marcelo Seido Nagano, Luis Aparecido Milan, Roberto Fernandes Tavares Neto |
Publisher | Universidade de São Paulo, Engenharia de Produção, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds