<p> It has been hypothesized that some measurable properties of $Z_{DR}$ arcs in supercells may change in the minutes prior to tornadogenesis and tornadogenesis failure, and that $Z_{DR}$ arc area will change with SRH and can be used as a real-time proxy to estimate SRH. Output form the Cloud Model 1 (CM1) along with a polarimetric emulator is used to simulate $Z_{DR}$ arcs in 9 tornadic and 9 non-tornadic supercells. A random forest algorithm is used to automatically identify the $Z_{DR}$ arcs. Finally the inflow sector SRH is calculated at times when $Z_{DR}$ arcs are identified. To analyze the change in intensity and area a comparison between the average $Z_{DR}$ value inside and outside of the arc, as well as the spatial size of the arc and storm was done. Model calculated SRH is then compared to these metrics.</p>
<p> </p>
<p> It has also been observed that hail fallout complicates the automatic identification of $Z_{DR}$ arcs. In this study, three experiments are run where the simulated $Z_{DR}$ arcs are produced. One using all categories of hydrometeors, one where wet growth and melting of hail is excluded, and one excluding the contribution to $Z_{DR}$ from the hail hydrometeor category. The same analysis as above is repeated for all three experiments. Finally observed $Z_{DR}$ arcs are analyzed to see if these results are applicable to the real world. </p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/22696060 |
Date | 26 April 2023 |
Creators | Allison Lafleur (15353692) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/ZDR_Arc_Area_and_Intensity_as_a_Precursor_to_Low_Level_Rotation_in_Supercells/22696060 |
Page generated in 0.0028 seconds