Return to search

Structures produit sur l'homologie de Floer des cobordismes lagrangiens / Product structures in Floer theory for Lagrangian cobordisms

Dans cette thèse, nous construisons un produit sur le complexe de Floer associé à une paire de cobordismes lagrangiens, où ce complexe de Floer est un complexe quotient du complexe de Cthulhu défini par Chantraine, Dimitroglou-Rizell, Ghiggini et Golovko. Plus précisément, pour tout triplet de cobordismes lagrangiens exacts transverses dans la symplectisation d’une variété de contact, nous définissons une application m2 en comptant des courbes holomorphes rigides à bord sur les cobordismes et asymptotes à des points d’intersection et à des cordes de Reeb dans les bouts legendriens négatifs des cobordismes. En étudiant les dégénérescences de courbes holomorphes, on montre que m2 satisfait la relation de Leibniz sur les complexes de Floer associés. / We construct a product on the Floer complex associated to a pair of Lagrangian cobordisms. This complex is a quotient complex of the Cthulhu complex defined by Chantraine, Dimitroglou-Rizell, Ghiggini and Golovko. More precisely, given three exact transverse Lagrangian cobordisms in the symplectization of a contact manifold, we define a map m2 by a count of rigid holomorphic curves with boundary on the cobordisms and asymptotic to intersection points and Reeb chords in the negative Legendrian ends of the cobordisms. By studying breakings of holomorphic curves, we prove that m2 satisfy the Leibniz rule on Floer complexes.

Identiferoai:union.ndltd.org:theses.fr/2018NANT4031
Date26 January 2018
CreatorsLegout, Noémie
ContributorsNantes, Bourgeois, Frédéric, Chantraine, Baptiste
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0016 seconds