Return to search

Propriétés d’adhérence de revêtements projetés plasma sur substrats fragiles : caractérisation et identification de lois d’interface par Modèles de Zones Cohésives / Plasma sprayed coatings adhesion properties on brittle substrate : characterization and identification of interface laws by cohesive zone model

La rupture adhésive est un mécanisme de défaillance fréquemment observé sur les structures multicouches et les pièces revêtues dans les technologies actuelles telles que la microélectronique, le biomédical ou l’aérospatial. Selon l’application visée et les sollicitations en service rencontrées, des propriétés d’adhérence minimales sont attendues.Le CEA Le Ripault étudie la tenue mécanique de systèmes revêtement/substrat. Deux assemblages constitués d’un revêtement projeté plasma, l’un céramique et l’autre métallique, sur un substrat fragile en céramique sont étudiés. Ces revêtements disposent d’une microstructure et de propriétés mécaniques bien spécifiques liées au procédé d’élaboration. L’un des objectifs de cette thèse est de caractériser et quantifier l’adhérence des revêtements projetés plasma aux moyens d’essais mécaniques. Classiquement, les essais d’adhérence sont largement développés pour l’étude de l’adhérence de revêtements céramiques sur substrats ductiles, pour des applications de type barrières thermiques. Or la grande fragilité des substrats et des revêtements représente des difficultés supplémentaires à la mise en œuvre des essais d’adhérence. Afin de prévenir la rupture cohésive du substrat, les essais nécessitent un effort d’adaptation tenant compte des contraintes dimensionnelles et matérielles imposées par l’assemblage. Par ailleurs, afin de caractériser intégralement l’adhérence, différents modes de sollicitation sont balayés à travers différents essais d’adhérence : traction, cisaillement bi-entaillé, clivage en coin, flexion 4 points sur éprouvette entaillée, four-point bend End Notched Flexure test (4-ENF),…Le second objectif est de prédire l’amorçage et la propagation de fissures à l’interface afin de garantir la tenue mécanique des assemblages. Pour cela, une stratégie d’identification d’une loi d’interface, décrivant son comportement à la rupture, est proposée. Les Modèles de Zones Cohésives (MZC) sont adoptés pour modéliser le délaminage, sous le code éléments finis ABAQUS, à l’aide d’une loi traction-séparation bilinéaire. La comparaison entre les réponses macroscopiques numérique et expérimentale de chacun des essais d’adhérence effectué permet de calibrer chaque paramètre de la loi cohésive. Ainsi, la démarche expérimentale et numérique couplée permet d’obtenir des scénarios de rupture conformes aux observations expérimentales et d’évaluer l’intégrité de la structure soumise à une sollicitation thermique ou mécanique donnée. / Interfacial cracking is a recurrent failure mechanism observed in multilayer structures and coating systems using in various fields as microelectronics, biomedical engineering or aerospace. According to the aimed application and operating loadings, a minimum adhesion of the interface is expected.CEA Le Ripault studies the mechanical strength of coating/substrate systems. Two multilayer structures made of plasma sprayed coating layer, one ceramic and the other metallic, on a brittle ceramic substrate are studied. These plasma sprayed coatings have specifics microstructure and mechanicals properties linked to manufacturing process.One of the purposes of this work is to characterize and quantify plasma sprayed coatings adhesion through mechanical tests. Adhesion tests are widely developed for study the adhesion of ceramic coatings on ductile substrates for thermal barrier coatings applications. However the high brittleness of substrates and coatings constitutes an additional difficulty to implement adhesion tests. In order to prevent cohesive failure in substrate, adhesion tests require an adaptation taking materials and dimensionals constraints into account. Furthermore, in order to fully characterize the adhesion, different loadings modes are scanned through various adhesion tests: tensile test, shear test, wedge test, four-point bending test, 4-ENF…The second purpose is to predict crack initiation and propagation along the interface in order to guarantee multilayer mechanical strength. In that purpose, an interfacial law identification strategy is proposed to describe failure behavior. A Cohesive Zone Model (CZM) is adopted to model the delamination, using the finite element code ABAQUS, with a bilinear traction-separation law. The numerical and experimental macroscopic response comparison of each performed adhesion test allows to identify one cohesive law parameter. Thus, the coupled approach allows to model failure scenario in good agreement with experimental observations and assess the integrity of the assembled structure under a thermal or a mechanical loading.

Identiferoai:union.ndltd.org:theses.fr/2016GREAI003
Date29 February 2016
CreatorsPons, Elodie
ContributorsGrenoble Alpes, Estevez, Rafaël
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds