• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 16
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 53
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence de l'hydrogène gazeux sur la vitesse de propagation d'une fissure de fatigue dans les métaux : approche expérimentale et modélisation / Influence of Gaseous Hydrogen on the Fatigue Crack Propagation Rate in Metals : Experimental Approach and Modeling

Bilotta, Giovambattista 18 March 2016 (has links)
L’objectif principal de ce travail est la compréhension des mécanismes qui gouvernent la fissuration assistée par l’hydrogène dans les métaux, en s’appuyant sur l’analyse expérimentale de la propagation des fissures en atmosphère hydrogénant et de l’interaction entre hydrogène et défauts cristallins, et sur le développement d’un modèle de zone cohésive influencé par l’hydrogène.Des essais de propagation de fissure de fatigue ont été réalisés sous haute pression d'hydrogène gazeux sur le fer de pureté commerciale Armco. Les résultats montrent une forte influence de la pression, de la fréquence et de la valeur de ΔK sur la modification des modes de rupture, et, par conséquent, sur les vitesses de propagation. Afin d’identifier les paramètres physiques pertinents qui gouvernent les modes de rupture, une étude sur l’interaction entre hydrogène et défauts cristallins développés lors d’une sollicitation cyclique a été réalisée. Nous avons observé une augmentation de l’absorption totale d’hydrogène avec la déformation plastique cumulée, qui peut être attribuée à l’augmentation du piégeage de l'hydrogène par les dislocations générées au cours de la déformation. Ces données seront ensuite introduites dans un modèle pour reproduire la modification de la diffusion de l’hydrogène en pointe de fissure, et son effet sur la plasticité.Par ailleurs, des mesures de la déformation plastique hors plan en pointe de fissure en présence d’hydrogène ont permis de proposer une amélioration d’un modèle de zone cohésive en introduisant un effet de l’hydrogène sur le comportement plastique des éléments de volume. De plus, l'étude des composantes de la loi de diffusion de Krom a montré l'importance du gradient de contrainte hydrostatique sur la diffusion et l'accumulation de l'hydrogène en pointe de fissure. Le modèle prédit une forte dépendance de la propagation de fissures vis-à-vis de la diffusion de l’hydrogène en pointe de fissure, et est capable de simuler la propagation de fissure sous chargement statique, validant ainsi la superposition d’une composante de fissuration cyclique et d’une contribution statique (due à la présence d’hydrogène), et expliquant la transition des vitesses de propagation observée expérimentalement. / The main purpose of this work is to understand the mechanisms that govern hydrogen assisted cracking in metals, based on the experimental analysis of crack propagation data under gaseous hydrogen and the interaction between hydrogen and lattice defects on the one hand, and on the development of a cohesive zone model influenced by hydrogen on the other hand.Fatigue crack propagation tests were performed under high pressure of gaseous hydrogen on the Armco iron. The results show a strong influence of the pressure, the frequency and the ΔK value, on the modification of the failure modes and on the fatigue crack growth rates. In order to identify the physical parameters that govern the changing of the failure modes, a study on the interaction between hydrogen and the crystallographic defects developed during a cyclic loading was performed. We observe an increase in the total absorption of hydrogen with the cumulated plastic deformation, which can be attributed to the increase in the hydrogen trapping by the dislocations generated during the cyclic deformation. These data have to be introduced into a numerical model to reproduce the modification of the hydrogen diffusion at the crack tip, and its effect on plasticity.Moreover, measurements of the out-of-plane plastic deformation at the crack tip in presence of hydrogen have conducted to an improvement of the cohesive zone model by introducing an effect of hydrogen on the plastic behavior of the volume elements. In addition, the study of Krom diffusion law components has shown the importance of the hydrostatic stress gradient on the diffusion and accumulation of hydrogen at the crack tip. The model predicts a strong dependence of the crack propagation with respect to the hydrogen diffusion at the crack tip, and it is able to simulate the propagation under static load, thus validating the cyclic cracking and static cracking superposition, and explaining the transient regime in fatigue crack growth rates experimentally observed.
2

A fast-track method for fatigue crack growth prediction with a cohesive zone model

Dahlan, Hendery January 2013 (has links)
An alternative point of view with regard to understanding the mechanism of energy transfer involved to create new surface is considered in this study. A combination of transport equation and cohesive element is presented. A practical demonstration in 1-D is presented to simulate the mechanism of energy transfer in a damage zone model for both elastic and elastic-plastic materials. The combination of transport and cohesion element shows the extent elastic energy plays to supply the energy required for crack growth. Meanwhile, plastic energy dissipation for an elastic-plastic material is shown to be well described by the transport approach. The cohesive zone model is one of many alternative approaches used to simulate fatigue crack growth. The model incorporates a relationship between cohesive traction and separation in the zone ahead of a crack tip. The model introduces irreversibility into the constitutive relationships by means of damage accumulation with cyclic loading. The traction-separation relationship underpinning the cohesive zone model is not required to follow a predetermined path, but is dependent on irreversibility introduced by decreasing a critical cohesive traction parameter. The approach can simulate fatigue crack growth without the need for re-meshing and caters for constant amplitude loading and single overloading. This study shows the retardation phenomenon occurring in elastic plastic-materials due to single overloading. Plastic materials can generate a significant plastic zone at the crack which is shown to be well captured by the cohesive zone model approach. In a cohesive zone model, fatigue crack growth involves the dissipation of separation energy released per cycle. The crack advance is defined by the total energy separation dissipated term equal to the critical energy release rate or toughness. The effect of varying toughness with the assumption that the critical traction remains fixed is investigated here. This study reveals that varying toughness does not significantly affect the stress distribution along the crack path. However, plastic energy dissipation can significantly increase with toughness. A new methodology called the fast-track method is introduced to accelerate the simulation of fatigue crack growth. The method adopts an artificial material toughness. The basic idea of the proposed method is to decrease the number of cycle for computation by reducing the toughness. By establishing a functional relationship between the number of cycles and variable artificial toughness, the real number of cycles can be predicted. The proposed method is shown to be an excellent agreement with the numerical results for both constant amplitude loading and single overloading. A new approach to predict fatigue crack growth curves is presented. The approach combines the fast-track method and an extrapolation methodology. The basic concept is to establish a function relationship using the curve fitting technique applied to data obtained from preliminary calculation of fast-track methodology. It is shown in this thesis that the new methodology provides excellent agreement with an empirical model. The methodology is limited to constant amplitude loading and small scale yielding conditions. It is shown in the thesis that fatigue crack growth curves for variable amplitude loading can be predicted by using the data set for fatigue crack growth rate for constant amplitude loading. A retardation parameter can be deduced from the number of cycles delayed using the cohesive zone model. The retardation parameter is established by performing calculation for different toughness. This methodology is shown to give good agreement with results from empirical models for different variable amplitude loading conditions.
3

Analysis of Metal to Composite Adhesive Joins in Space Applications / Analys av limförband mellan metall och kompositmaterial i rymdtillämpningar

Fors, Fredrik January 2010 (has links)
<p>Within the European space programme, a new upper stage engine (Vinci) for the Ariane 5 launcher is being developed, and the Volvo Aero Corporation (VAC) is contributing with tur-bines for the fuel turbopumps. This MSc thesis investigates the possibility of designing the Turbine Exhaust Duct (TED) of the Vinci-engine in a carbon fibre composite material with adhesively attached titanium flanges. The focus of the project has been on stress analyses of the adhesive joints using Finite Element Methods (FEM), more specifically by using a cohe-sive zone material (CZM) to model the adhesive layer. Analysing adhesive joints is complex and an important part of the work has been to develop and concretise analysis methods for future use within VAC.</p><p>To obtain the specialised material parameters needed for a CZM analysis, FE-models of ten-sile test specimens were analysed and the results compared to those of equivalent experimen-tal tensile tests. These parameters were then used when analysing the TED geometry with load cases specified to simulate the actual operation conditions of the Vinci engine. Both two-dimensional axisymmetric and fully three-dimensional models were analysed and, addition-ally, a study was performed to evaluate the effect of cryogenic temperatures on the strength of the joint.</p><p>The results show that the applied thermal and structural loading causes local stress concentra-tions on the adhesive surface, but the stresses are not high enough to cause damage to the joint if a suitable joint design is used. Cryogenic temperatures (-150 °C) caused a significant strength reduction in the tensile specimens, partially through altered adhesive properties, but no such severe effects were seen in the temperature-dependent FE-analyses of the TED. It should be pointed out however, that some uncertainties about the material parameters exist, since these were obtained in a rather unconventional way. There are also several other impor-tant questions, beside the strength of the adhesive joint, that need to be answered before a metal-composite TED can be realised.</p> / <p>Volvo Aero deltar i utvecklingen av Vinci, en ny motor till det övre steget i den europeiska Ariane 5-raketen. Detta examensarbete behandlar möjligheten att tillverka ett turbinutlopp (TED) till vätgasturbinen i Vinci-motorn i kompositmaterial med flänsar i titan för att på så sätt uppnå en viktbesparing gentemot den tidigare konstruktionen i gjuten Inconel 718. Fokus har legat på att analysera hållfastheten i de limfogar som är tänkta att sammanfoga huvudröret med flänsarna, genom analyser med finita elementmetoden (FEM). Ett viktigt syfte har även varit att, för Volvo Aeros räkning, samla praktiska erfarenheter angående numerisk analys av limfogar, särskilt med användning av kohesiva zon-element för att modellera limfogen.</p><p>FEM-analyser har gjorts av provstavsmodeller, där resultaten sedan jämförts med experimen-tella dragprovsresultat för att ta fram lämpliga material- och modelleringsparametrar för ana-lys med kohesiva zonelement. Därefter tillämpades dessa parametrar i analyser av den verkli-ga TED-geometrin med relevanta lastfall framtagna för att simulera driftsförhållandena i Vin-ci-motorn. Lastfallsanalyser med både tvådimensionellt axisymmetriska och tredimensionella geometrimodeller genomfördes, liksom uppskattningar av limfogens styrka vid kryogena driftstemperaturer.</p><p>Resultaten pekar entydigt mot att en limfog med en ändamålsenlig tvärsnittsgeometri skulle hålla för de angivna lasterna utan att ta skada. De spänningskoncentrationer som uppstår ger lokalt höga spänningar i limmet, men inte på nivåer som skulle kunna orsaka brott. Det finns dock en viss osäkerhet angående riktigheten i materialparametrarna då en något okonventio-nell metod användes för att ta fram dessa. Flera stora frågor finns fortfarande kvar att besvara innan en metall-komposit konstruktion kan realiseras, inte minst hur flödeskammarens kom-plicerade geometri skall kunna tillverkas i kompositmaterial.</p>
4

Analysis of Metal to Composite Adhesive Joins in Space Applications / Analys av limförband mellan metall och kompositmaterial i rymdtillämpningar

Fors, Fredrik January 2010 (has links)
Within the European space programme, a new upper stage engine (Vinci) for the Ariane 5 launcher is being developed, and the Volvo Aero Corporation (VAC) is contributing with tur-bines for the fuel turbopumps. This MSc thesis investigates the possibility of designing the Turbine Exhaust Duct (TED) of the Vinci-engine in a carbon fibre composite material with adhesively attached titanium flanges. The focus of the project has been on stress analyses of the adhesive joints using Finite Element Methods (FEM), more specifically by using a cohe-sive zone material (CZM) to model the adhesive layer. Analysing adhesive joints is complex and an important part of the work has been to develop and concretise analysis methods for future use within VAC. To obtain the specialised material parameters needed for a CZM analysis, FE-models of ten-sile test specimens were analysed and the results compared to those of equivalent experimen-tal tensile tests. These parameters were then used when analysing the TED geometry with load cases specified to simulate the actual operation conditions of the Vinci engine. Both two-dimensional axisymmetric and fully three-dimensional models were analysed and, addition-ally, a study was performed to evaluate the effect of cryogenic temperatures on the strength of the joint. The results show that the applied thermal and structural loading causes local stress concentra-tions on the adhesive surface, but the stresses are not high enough to cause damage to the joint if a suitable joint design is used. Cryogenic temperatures (-150 °C) caused a significant strength reduction in the tensile specimens, partially through altered adhesive properties, but no such severe effects were seen in the temperature-dependent FE-analyses of the TED. It should be pointed out however, that some uncertainties about the material parameters exist, since these were obtained in a rather unconventional way. There are also several other impor-tant questions, beside the strength of the adhesive joint, that need to be answered before a metal-composite TED can be realised. / Volvo Aero deltar i utvecklingen av Vinci, en ny motor till det övre steget i den europeiska Ariane 5-raketen. Detta examensarbete behandlar möjligheten att tillverka ett turbinutlopp (TED) till vätgasturbinen i Vinci-motorn i kompositmaterial med flänsar i titan för att på så sätt uppnå en viktbesparing gentemot den tidigare konstruktionen i gjuten Inconel 718. Fokus har legat på att analysera hållfastheten i de limfogar som är tänkta att sammanfoga huvudröret med flänsarna, genom analyser med finita elementmetoden (FEM). Ett viktigt syfte har även varit att, för Volvo Aeros räkning, samla praktiska erfarenheter angående numerisk analys av limfogar, särskilt med användning av kohesiva zon-element för att modellera limfogen. FEM-analyser har gjorts av provstavsmodeller, där resultaten sedan jämförts med experimen-tella dragprovsresultat för att ta fram lämpliga material- och modelleringsparametrar för ana-lys med kohesiva zonelement. Därefter tillämpades dessa parametrar i analyser av den verkli-ga TED-geometrin med relevanta lastfall framtagna för att simulera driftsförhållandena i Vin-ci-motorn. Lastfallsanalyser med både tvådimensionellt axisymmetriska och tredimensionella geometrimodeller genomfördes, liksom uppskattningar av limfogens styrka vid kryogena driftstemperaturer. Resultaten pekar entydigt mot att en limfog med en ändamålsenlig tvärsnittsgeometri skulle hålla för de angivna lasterna utan att ta skada. De spänningskoncentrationer som uppstår ger lokalt höga spänningar i limmet, men inte på nivåer som skulle kunna orsaka brott. Det finns dock en viss osäkerhet angående riktigheten i materialparametrarna då en något okonventio-nell metod användes för att ta fram dessa. Flera stora frågor finns fortfarande kvar att besvara innan en metall-komposit konstruktion kan realiseras, inte minst hur flödeskammarens kom-plicerade geometri skall kunna tillverkas i kompositmaterial.
5

The Ductile to Brittle Transition in Polycarbonate

Pogacnik, Justin January 2011 (has links)
<p>An advanced bulk constitutive model is used with a new cohesive zone model that is stress state and rate-dependent in order to simulate the ductile to brittle failure transition in polycarbonate. The cohesive zone model is motivated by experimental evidence that two different critical energies per unit area of crack growth exist in glassy polymers. A higher energy state is associated with ductile failure (slow crack growth), while a lower energy state is associated with brittle failure (fast crack growth). The model is formulated so that as rate or stress state changes within a simulation, the fracture energy and thus fracture mode may also change appropriately. The ductile to brittle transition occurs when the cohesive opening rate is over a threshold opening rate and when the stress state is close to plane strain in a fracture specimen. These effects are coupled. The principal contribution of this work is that this is the first time a single set of material input parameters can predict the transition from slow to fast crack growth as test loading rate and sample thickness are varied. This result enlisted the use of an advanced constitutive model and the new cohesive zone model with rate and stress-state dependencies in three-dimensional finite element analysis.</p> / Dissertation
6

Enhancing structural integrity of adhesive bonds through pulsed laser surface micro-machining

Diaz, Edwin Hernandez 06 1900 (has links)
Enhancing the effective peel resistance of plastically deforming adhesive joints through laser-based surface micro-machining Edwin Hernandez Diaz Inspired by adhesion examples commonly found in nature, we reached out to examine the effect of different kinds of heterogeneous surface properties that may replicate this behavior and the mechanisms at work. In order to do this, we used pulsed laser ablation on copper substrates (CuZn40) aiming to increase adhesion for bonding. A Yb-fiber laser was used for surface preparation of the substrates, which were probed with a Scanning Electron Microscope (SEM) and X-ray Photoelectron Spectroscopy (XPS). Heterogeneous surface properties were devised through the use of simplified laser micromachined patterns which may induce sequential events of crack arrest propagation, thereby having a leveraging effect on dissipation. The me- chanical performance of copper/epoxy joints with homogeneous and heterogeneous laser micromachined interfaces was then analyzed using the T-peel test. Fractured surfaces were analyzed using SEM to resolve the mechanism of failure and adhesive penetration within induced surface asperities from the treatment. Results confirm positive modifications of the surface morphology and chemistry from laser ablation that enable mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy, bond toughness, and effective peel force were appreciated with respect to sanded substrates as control samples.
7

Numerical Study on Cohesive Zone Elements for Static and Time Dependent Damage and its Application in Pipeline Failure Analysis

January 2016 (has links)
abstract: Cohesive zone model is one of the most widely used model for fracture analysis, but still remains open ended field for research. The earlier works using the cohesive zone model and Extended finite element analysis (XFEM) have been briefly introduced followed by an elaborate elucidation of the same concepts. Cohesive zone model in conjugation with XFEM is used for analysis in static condition in order to check its applicability in failure analysis. A real time setup of pipeline failure due to impingement is analyzed along with a detailed parametric study to understand the influence of the prominent design variable. After verifying its good applicability, a creep model is built for analysis where the cohesive zone model with XFEM is used for a time dependent creep loading. The challenge in this simulation was to achieve coupled behavior of cracks initiation and propagation along with creep loading. By using Design of Experiment, the results from numerical simulation were used to build an equation for life prediction for creep loading condition. The work was further extended to account for fatigue damage accumulation for high cycle fatigue loading in cohesive elements. A model was conceived to account for damage due to fatigue loading along within cohesive zone model for cohesive elements in ABAQUS simulation software. The model was verified by comparing numerical modelling of Double cantilever beam under high cycle fatigue loading and experiment results from literature. The model was also applied to a major industrial problem of blistering in Cured-In-Plane liner pipelines and a demonstration of its failure is shown. In conclusion, various models built on cohesive zone to address static and time dependent loading with real time scenarios and future scope of work in this field is discussed. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
8

Efeito de escala no crescimento de trincas por fadiga em materiais quase-frágeis / Size effect on fatigue crack growth in quase-brittle materials

Cayro, Evandro Esteban Pandia January 2016 (has links)
No trabalho estuda-se o crescimento de trincas em carga monotônica e cíclica nos casos de materiais quase-frágeis, introduzindo uma lei de dano cíclico. Revisam-se conceitos sobre modelos coesivos, leis de carga-descarga, leis de evolução de dano e efeito de escala. É seguido o modelo coesivo irreversível proposto por Wang e Siegmund (2006). Em particular se dá ênfase aos efeitos de escala não estatísticos. O modelo de zona coesiva irreversível apresenta uma formulação de dano e considera carregamento em fadiga. Quando o tamanho estrutural é reduzido (ou as trinca se extendem), a fratura por fadiga não mais ocorre por propagação de trinca, mas sim por uma decoesão uniforme. O objetivo desde trabalho é implementar este modelo e verificar sua potencialidade na captura de efeitos de escala, comparando com experimentos e dados disponíveis na literatura. / At present work is intended to study crack growth in cyclic and monotonic loading in the case of quasi-brittle materials, introducing a damage mechanism, is reviewed concepts of cohesive models, loading-unloading laws, damage evolution laws and effect of scale. The irreversible cohesive zone model proposed by Wang e Siegmund (2006) is followed. In particular emphasizes in the not statistical size effects. The irreversible cohesive zone model, presents a damage formulation and considers fatigue loading. It is demonstrated in this study that, when the structure size is reduced (or extend cracks), the fatigue fracture no longer occurs by crack propagation, then occurs by uniform decohesion . The objetive of this work is implementing this model and verify its capability to capture the scale effect compared with experiments and data available in literature.
9

Multiple-Scale Numerical Analysis of Composites Based on Augmented Finite Element Method

Zhou, Zhiqiang 21 July 2010 (has links)
Advanced composites are playing a rapidly increasing role in all fields of material and structural related engineering practices. Damage tolerance analysis must be a critical integral part of composite structural design. The predictive capabilities of existing models have met with limited success because they typically can not account for multiple damage evolution and their coupling. As a result, current composite design is heavily dependent upon lengthy and costly test programs and empirical design methods. There is an urgent need for efficient numerical tools that are capable of analyzing the progressive failure caused by nonlinearly coupled, multiple damage evolution in composite materials. Such numerical tools are a necessity in achieving virtual testing of composites and other heterogeneous materials. In this thesis, an advanced finite element method named augmented finite element method (A-FEM) has been developed. This method is capable of incorporating nonlinear cohesive damage descriptions for major damage modes observed in composite materials. It also allows for arbitrary nucleation and propagation of such cohesive damages upon satisfactory of prescribed initiation and propagation criterion. Major advantages of the A-FEM include: 1) arbitrary cohesive cracking without the need of remeshing; 2) full compatibility with existing FEM packages; and 3) easy inclusion of intra-element material heterogeneity. The numerical capabilities of the A-FEM have been demonstrated through direct comparisons between prediction results and experimental observations of typical composite tests including 3-point bending of unidirectional laminates, open-hole tension of quasi-isotropic laminates, and double-notched tension of orthogonal laminates. In all these tests, A-FEM can predict not only the qualitative damage patterns but also quantitatively the nonlinear stress-strain curves and other history-dependent results. The excellent numerical capability of A-FEM in accurately accounting for multiple cracking in composites enables the use of A-FEM as a multi-scale numerical platform for virtual testing of composites. This has been demonstrated by a series of representative volume element (RVE) analyses which explicitly considered microscopic matrix cracking and fiber matrix interface debonding. In these cases the A-FEM successfully predicted the cohesive failure descriptions which can be used for macroscopic composite failure analyses. At the sublaminate scale, the problem of a transverse tunneling crack and its induced local delamination has been studied in detail. Two major coupling modes, which depends on the mode-I to mode-II fracture toughness ratio and cohesive strength values, has been revealed and their implications in composite engineering has been fully discussed. Finally, future improvements to the A-FEM so that it can be more powerful in serving as a numerical platform for virtual testing of composites are discussed.
10

Fracture and delamination of elastic thin films on compliant substrates : modeling and simulations

Mei, Haixia 21 October 2011 (has links)
Different fracture modes have been observed in thin film structures. One common approach used in fracture analysis is based on the principle of linear elastic fracture mechanics (LEFM), which assumes pre-existing cracks and treats the materials as linear elastic except for the damage zone around the crack tip. Alternatively, a nonlinear cohesive zone model (CZM) can be used to simulate both nucleation and growth of cracks. In this dissertation, the approaches of LEFM and CZM are employed to study fracture and delamination of elastic thin films on compliant substrates under various loading conditions. First, compression-induced buckling of elastic thin films on elastic compliant substrates is studied by analytical and numerical methods. The critical condition for onset of buckling instability without and with a pre-existing delamination crack is predicted. By comparing the critical strains, a map for the initial buckling modes is constructed with respect to the film/substrate stiffness ratio and the interfacial defect size. For an elastic film on a highly compliant substrate, nonlinear post-buckling analysis is conducted to simulate concomitant wrinkling and buckle-delamination, with a long-range interaction between the two buckling modes through the compliant substrate. By using a layer of cohesive elements for the interface, progressive co-evolution of wrinkling and delamination is simulated. In particular, the effects of interfacial properties (strength and toughness) on the initiation and propagation of wrinkle-induced interfacial delamination are examined. Next, using a set of finite element models, the effects of interfacial delamination and substrate penetration on channel cracking of brittle thin films are analyzed. It is found that, depending on the elastic mismatch and the toughness of interface and substrate, a channel crack may grow with interfacial delamination and/or substrate cracking. By comparing the effective energy release rates, the competition between the two fracture modes is discussed. Cohesive zone modeling is then employed to simulate nucleation and growth of delamination and penetration from the root of a channel crack. By comparing the results from the approaches of LEFM and CZM, the characteristic fracture resistance from small-scale bridging to large-scale bridging is identified. Finally, to determine the nonlinear traction-separation relation for cohesive zone modeling of a bimaterial interface, a hybrid approach is developed by combining experimental measurements and finite element simulations. In particular, both analytical and numerical models for wedge-loaded double cantilever beam specimens are developed. A two-step fitting procedure is proposed to determine the interface toughness and strength based on the measurements of the steady-state crack length and the local crack opening displacements. / text

Page generated in 0.0911 seconds